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Abstract

Across many settings, from social transfers to education and health services,
reforms that aim to make access uniformly easier for everyone often exacerbate
inequality. When access to the redistributive surplus is determined through com-
petition, such reforms increase players’ efficiency in the contest but also raise the
endogenous efficiency threshold for participation. I formalize this threshold-shifting
mechanism in a model of decentralized redistribution, where heterogeneous efficien-
cies determine both who competes and how the redistributive surplus is allocated.
The model delivers two main results. First, a uniform efficiency gain—i.e., equal
reductions in access costs—does not expand participation. Instead, it amplifies
inequality among participants by reinforcing the relative efficiency of those who
were already highly efficient prior to the reform. Yet, such a reform also reduces
contest-induced welfare loss, thereby giving rise to an equity–efficiency trade-off for
policymakers. Second, a participation-expanding reform that brings excluded players
into the contest can reduce both inequality and welfare loss, particularly when: (i)
the new entrants are sufficiently efficient relative to the average participant; and (ii)
the Herfindahl–Hirschman Index (HHI) of endogenous contest strengths—measuring
the extent to which players’ efficiencies exceed the participation threshold—is suffi-
ciently high before the reform; for example, when a few strong participants dominate
the competition for redistributive surplus.
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1 Introduction

To promote fairness in access to public resources, governments frequently introduce
uniform reforms, i.e., reforms that reduce access costs equally for everyone—from digitized
applications and simplified procedures to transparency portals. Yet these interventions
have increased inequality across many contexts.

For example, in India, the introduction of biometric smartcards under Aadhaar
improved payment efficiency and reduced leakage but also generated exclusion errors,
especially among rural and elderly beneficiaries (Muralidharan et al. (2016)). Broader
financial management reforms likewise enhanced accountability yet produced uneven
benefits across regions and social groups (Banerjee et al. (2020)). In Uganda, transparency
campaigns designed to curb local capture of school grants successfully reduced corruption,
but the gains were concentrated in areas with better media access (Reinikka and Svensson
(2004)). Why do policies meant to equalize access sometimes reinforce disparities?

Some theoretical studies show that treating heterogeneous agents symmetrically need
not equalize outcomes. For instance, Moldovanu and Sela (2001) show that in contest
environments with heterogeneous costs, even symmetric prize structures can induce
unequal effort and inefficient dissipation; in collective-action settings, group structure and
prize characteristics shape success asymmetrically (Esteban and Ray (1999); Esteban and
Ray (2001)).

I isolate a simple yet important channel—the threshold-shifting mechanism—that helps
explain the inequality-amplifying effects of uniform reforms, a novel attempt in the contest
literature to the best of myknowledge. I formalize this mechanism in a tractable model
of contest-based redistribution with endogenous participation, where players’ efficiencies
in converting resources into effort determine the allocation of the redistributive surplus.
I then derive comparative statics to study how efficiency-enhancing reforms affect the
endogenous entry rule for participation (i.e., exerting positive effort) and how this change
reshapes the final allocation of the surplus.

The model delivers two core results. First, a uniform efficiency improvement amplifies
inequality, as it fails to expand participation and disproportionately increases the relative
advantage of the most efficient players, even as all agents become more efficient under the
uniform reform. By contrast, a participation-expanding policy that brings marginal players
into the contest can simultaneously lower inequality and reduce dissipative effort, especially
when pre-entry efficiency is highly concentrated or when the entrant is sufficiently efficient
compared to the average of existing participants.

These results arise from simple yet fairly general economic forces. As in any model with
endogenous participation, only those players in the model whose inefficiency is lower than
a scaled average of the other participants’ inefficiencies endogenously choose to compete
for redistribution—that is, they exert strictly positive effort. Participation is therefore
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comparative and self-referential: each agent enters only if sufficiently efficient relative
to others, making the participant set the fixed point of this entry rule. This threshold
motivates the equilibrium notion of contest strength: for a participant, it is defined as the
gap between the participation cutoff inefficiency and the participant’s own efficiency, and
it is zero for nonparticipants. In equilibrium, redistribution shares vary with the square of
relative contest strength. While this quadratic mapping amplifies differences in relative
strength, the qualitative mechanisms I study do not rely on convexity.

When a uniform reform reduces everyone’s inefficiency by the same amount, two
changes occur. First, the participation cutoff tightens because the collective improvement
of many rivals outweighs any one individual’s gain. This, in turn, makes participation more
selective and can push marginal participants out of the contest.1 Beyond the potential
exclusion of weaker participants, uniform efficiency-enhancing reforms also reshape the
relative contest strengths of those who remain active. Since the bar for participation rises
faster than any individual’s efficiency, every active player experiences the same absolute
reduction in contest strength—that is, their efficiency advantage over the cutoff narrows
by an equal amount. Because redistribution outcomes depend on relative contest strength,
this uniform reduction penalizes marginal participants proportionally more than dominant
ones, thereby amplifying the advantages of high-efficiency participants.

Furthermore, a uniform policy reduces aggregate dissipation from effort. Aggregate
dissipation is derived endogenously in the model as a fixed share of the redistributive
surplus, equal to 1 − HHI, where the Herfindahl–Hirschman Index (HHI) measures the
concentration of contest strength among active players.2 The term 1 − HHI therefore
represents the fraction of the surplus lost through strategic effort. When contest strength
is evenly distributed, HHI is low and dissipation is high; and when contest strength is
concentrated among a few dominant players, HHI is high and dissipation falls.3 A uniform
efficiency reform tightens competition and enhances the relative advantage of the most
efficient participants, so that contest strength becomes more concentrated among fewer
players and aggregate dissipation declines. Hence, a uniform policy inherently entails a
trade-off between equality and efficiency.

Alternatively, a participation-expanding reform that enables previously non-participants
to enter the competition reduces inequality between participants and non-participants.
More importantly, it can also lower aggregate dissipation—when the new entrants become
sufficiently efficient relative to the average efficiency of existing participants and/or when
contest strength is already highly concentrated among a few players. This is because
when a new participant enters, the contest reshapes itself. To enter, a new participant

1In this environment, there is no equilibrium with zero or only one active participant.
2Formally, HHI =

∑
i∈L s2

i , where si is player i’s contest share in equilibrium; 1 − HHI thus captures
the fraction of the surplus dissipated through effort.

3In the symmetric benchmark with L active players (all equally efficient), the concentration index is
HHI = 1/L, so the equilibrium dissipation factor is 1 − HHI = 1 − 1

L .
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must become more efficient than the current participation cutoff. This, in turn, reduces
the inefficiency threshold which is a scaled average of the efficiencies of those already
active. Thus, entry intensifies competition: existing participants lose relative strength,
their shares of the surplus shrink, and the entrant gains a positive share.

The effect of entry on aggregate dissipation is more subtle and depends on the entrant’s
contest strength and pre-entry dissipation of the competition. Entry directly increases
rivalry, which tends to raise dissipation, yet it also changes the balance of contest strength
among participants. Since the new, lower inefficiency cutoff reduces every participant’s
contest strength by the same amount, weaker participants lose relatively more than
stronger ones. This discourages weaker participants from exerting effort, sometimes
enough to offset the extra rivalry created by entry. In particular, this occurs when the
entrant is highly efficient or when the contest is already dominated by a few strong players.
In such cases, aggregate dissipation could decline after entry, as marginal participants
pull back more sharply from costly competition. This contrasts with the naive intuition
that adding a stronger competitor to the contest-based redistribution necessarily increases
aggregate effort dissipation.

Although the main analysis of the paper focuses on inequality in redistribution shares,
it also speaks to how reforms affect wealth inequality when the alignment between wealth
and efficiency becomes central. This alignment is less important in redistribution when
pre-existing wealth gaps are small, when redistribution draws on large exogenous resources
such as public funds or natural rents, or when investment in efficiency is slow—as in
short-run redistribution. It becomes crucial, however, when redistributive resources arise
endogenously from agents’ wealth or when players can invest to enhance efficiency.

When wealth and efficiency are positively aligned—a diverging-inequality regime—the
threshold-shifting mechanism remains but becomes self-reinforcing. Efficient agents are
also wealthy, allowing them to sustain higher effort and stay well above the participation
threshold. Uniform reforms that lower inefficiency or access costs therefore benefit these al-
ready advantaged players the most: they tighten the participation cutoff, exclude marginal
entrants, and concentrate contest strength among efficient–wealthy agents. Inequality
rises while aggregate dissipation falls—an equity–efficiency trade-off characteristic of a
diverging regime.

When wealth and efficiency are negatively aligned—a self-correcting regime—the
mechanism reverses. Efficient agents are relatively poor, while wealthier players are less
effective competitors. Uniform reforms now strengthen the relative position of efficient
low-wealth agents, allowing them to capture more of the surplus and compress inequality.
By contrast, participation-expanding reforms that relax entry for wealthy but inefficient
players shift surplus upward and widen disparities.

Hence, identical efficiency-enhancing reforms can yield opposite distributive outcomes
depending on the sign of wealth–efficiency alignment. In positively aligned environments,
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uniform reforms must be paired with inclusion-oriented measures to prevent elite capture.
Where efficiency is concentrated among the less wealthy, uniform reforms can simultane-
ously reduce inequality and dissipation, while participation-expanding policies no longer
promote equality.

1.1 Related Literature

This paper contributes to a growing literature at the intersection of public economics,
development, and political economy. Its central insight—that uniform reforms can
unintentionally amplify inequality through the endogenous participation—builds on and
extends three strands of research.

First, it relates to the literature on contests and rent seeking, where agents exert costly
effort to capture a surplus (e.g., Tullock et al. (1980); Skaperdas (1996); Konrad (2009)).
Classical models in this tradition typically assume fixed participation and symmetric
behavior, while subsequent work introduces heterogeneity in costs or abilities to study
how these differences shape entry, rent dissipation, and equilibrium effort allocation (e.g.,
Moldovanu and Sela (2006); Esteban and Ray (2011)). While this literature generally
treats participation thresholds as technologically or exogenously determined, a strand of
models examines endogenous participation or entry cutoffs, showing that players with
sufficiently low costs or high abilities self-select into competition, while others optimally
abstain (e.g., Gradstein (1995); Nti (1999)). This paper builds on this literature by
studying how policy-driven changes in the participation threshold affect inequality and
aggregate dissipation of effort. To the best of my knowledge, this is the first model that
studies how policy-driven threshold-shifting mechanisms influence equilibrium allocations
in contests.

Second, the paper connects to empirical and theoretical work on access to pub-
lic resources in unequal institutional environments. Across diverse settings, uniform
administrative or technological upgrades—intended to lower average frictions—have dis-
proportionately benefited already advantaged actors. In Uganda, transparency campaigns
improved school funding oversight mainly for politically connected principals who could
act on the disclosed information (Reinikka and Svensson (2004); Bardhan and Mookherjee
(2006)). In India, welfare digitization accelerated payments for urban and digitally literate
households while excluding rural claimants with limited connectivity (Dutta et al. (2014)).
Similar mechanisms arise in other contexts: anti-corruption drives or e-governance reforms
often improve efficiency on average but amplify gaps in access when implementation
requires information, literacy, or bureaucratic familiarity (Olken (2007); Acemoglu and
Robinson (2008); Olken and Pande (2012)).

Recent evidence extends this pattern beyond traditional redistributive programs. For
instance, Fonseca and Matray (2024) show that financial inclusion initiatives in Brazil
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increased average access to credit but widened income inequality, as more educated
individuals captured disproportionate benefits. Tu et al. (2025) document that unequal
access to infrastructure and services is strongly associated with health and socioeconomic
inequality worldwide, underscoring how ostensibly universal improvements can translate
into regressive outcomes when baseline asymmetries persist.

The second result shows that participation-expanding reforms—those that bring
marginal actors into the contest—can simultaneously reduce inequality and dissipation,
particularly when contest capacity is highly concentrated among a few participants or when
the reform enables new entrants to compete effectively. Evidence from inclusion-oriented in-
terventions supports this prediction: programs that facilitate entry for previously excluded
groups—such as localized monitoring, targeted awareness campaigns, or participation
subsidies—have been shown to expand effective participation and compress inequality
(e.g., Bardhan and Mookherjee (2000); Björkman and Svensson (2009); Casey et al. (2012);
Banerjee et al. (2015); Banerjee et al. (2019); Andrews et al. (2021)). These empirical
patterns highlight a broader policy implication: efficiency gains that are not coupled with
inclusion risk reallocating rents upward, even when formal access rules appear equal.

Finally, this paper relates to studies that examine how the correlation between wealth
and efficiency affects inequality. When wealth and productive efficiency are positively
aligned, improvements in efficiency can increase inequality by concentrating resources
among already advantaged agents. This mechanism is similar to Aghion and Bolton
(1997), where credit constraints link investment to existing wealth, and to Galor and
Moav (2004) and Aghion et al. (2015), where economies move from inequality-amplifying
to inequality-reducing stages as the wealth–efficiency correlation changes. Some recent
studies also show that greater market power or heterogeneity in returns can strengthen
this alignment and widen inequality (Aghion et al. (2023); Daminato and Pistaferri (2024);
Impullitti and Rendahl (2025)). A related pattern appears in Esteban and Ray (1999),
where stronger wealth–ability alignment increases conflict and inequality. Empirical
evidence shows a similar pattern, with stronger capital–labor correlations and diverging
wealth–income distributions associated with persistent inequality in advanced economies
(Piketty and Saez (2003); Gabaix et al. (2016); Gaillard et al. (2023)). This paper sheds
light on how identical efficiency-enhancing reforms can have opposite effects on inequality,
depending on the alignment between wealth and efficiency.

1.2 Evidence from MGNREGA

The Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) is
a nationwide rural public-works program in India that guarantees up to 100 days of
wage employment per rural household each financial year. The scheme rolled out in
phases beginning in 2006 and reached all rural districts by 2008. Using district–year
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administrative data, I examine how the composition of participation evolves across social
groups—Scheduled Castes (SC), Scheduled Tribes (ST), and Non–SC/ST—focusing on
the “households worked” share, defined for each group g as

y
(g)
it = HH worked(g)

it

HH workedtotal
it

∈ [0, 1], (1.1)

for district i in year t.
The Scheduled Castes (SC) comprise communities historically subject to caste-based

exclusion and occupational segregation under the Hindu caste system, many of whom were
formerly regarded as “untouchables.” The Scheduled Tribes (ST) consist of indigenous and
often geographically isolated groups with distinct cultural practices, who have historically
faced economic marginalization and limited access to state institutions. The residual
Non–SC/ST category encompasses the remaining rural population, including dominant
agrarian castes and other social groups that—relative to SC and ST—have typically had
greater access to land, education, and political representation.

For each group g, I partial out time-invariant district heterogeneity and observed
covariates by estimating

y
(g)
it = αi + X′

itβ + ε
(g)
it , (1.2)

with standard errors clustered at the district level, where αi are district fixed effects
and Xit is the full covariate set. I then recover the common time path by averaging the
residuals by year,

ε̂
(g)
t = 1

Nt

∑
i

ε̂
(g)
it , (1.3)

and center the resulting series so its mean over t is zero. This procedure is equivalent to
estimating year effects up to an additive constant, while not imposing year dummies so
that common time variation is preserved in the plotted series.

Figure 1 plots adjusted time paths of the households-worked shares for Scheduled
Castes (SC), Scheduled Tribes (ST), and Non–SC/ST groups. The shaded band marks the
program’s digitization phase (e-FMS, approximately 2012–2015), and vertical dash–dot
lines indicate subsequent payment milestones (DBT in 2013, Aadhaar/APBS plan in late
2013, and NeFMS in 2018). The principal pattern is a sustained rise in the Non–SC/ST
share beginning around 2015–2016 that persists through and beyond the NeFMS period,
while the SC share declines and the ST share remains comparatively flat.

The adjusted person-days shares show a similar pattern. During the digitization
phase (2012–2015), which overlaps with DBT (2013) and Aadhaar/APBS (late 2013),
composition changes across groups remain modest and unsynchronized. From 2015–2016
onward, the Non–SC/ST share rises persistently through the NeFMS milestone (2018)
and beyond, while the SC share declines and the ST share remains relatively flat, with at
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Figure 1: Adjusted time trends of households-worked shares by group (SC, ST, Non–
SC/ST). Each series is district-demeaned and covariate-adjusted, averaged by calendar year
and centered; vertical dash–dot lines mark payment milestones (DBT 2013; Aadhaar/APBS
2013 Q3; NeFMS 2018), and the shaded band denotes e-FMS digitization (2012–2015).

Figure 2: Adjusted time trends of person-days shares by group (SC, ST, Non–SC/ST).
Each series is district-demeaned and covariate-adjusted, averaged by year and centered;
vertical dash–dot lines mark DBT (2013), Aadhaar/APBS (2013 Q3), and NeFMS (2018);
the shaded band denotes e-FMS digitization (2012–2015).

most a mild recovery.
The divergence that emerges after digitization—marked by rising participation of

relatively advantaged groups and stagnation or decline among historically disadvantaged
ones—reflects a broader pattern discussed in the section 1.1 on uniform reforms and access
inequality.
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2 Model

In this section, I develop a simple and tractable contest model with a lottery contest
function that forms the basis for the policy analysis. I later show in 2.3 that the
counterintuitive results of the policy analysis are qualitatively robust across a broad class
of environments.

A finite set of players N = {1, . . . , N}, each endowed with initial wealth wi > 0,
simultaneously exerts non-negative effort ei ≥ 0 to influence the distribution of a common
surplus, which is determined both endogenously from the players’ wealth and exogenously
through a prize. The players are heterogeneous in terms of the costs they incur to adopt
efforts. players face a tradeoff between spending costly effort to secure a larger share of
the redistributable surplus and conserving their wealth by avoiding effort and contest
participation. I first formalize how cost heterogeneity shapes strategic effort, drives
endogenous exclusion, and influences post-contest inequality and aggregate dissipation.
Building on this, the central analysis of the paper examines how a uniform reduction in
effort costs alters participation, inequality, and aggregate dissipation.

In the benchmark analysis, I employ a lottery contest success function for tractability,
and in Section 2.3 I show that the results extend to a broad class of utility functions.
Specifically, player i’s share of the contested pool is given by

ei

EN

,

where EN := ∑
j ej denotes total effort. This contest success function, first introduced

by Tullock et al. (1980) and later microfounded by ? and ?, characterizes environments
with high uncertainty in which influence scales linearly with input. Put differently, each
unit of effort is treated as a lottery ticket in the redistribution process. Finally, while this
formulation does not yield an equilibrium when no player exerts positive effort, in such a
case, I impose the convention that

ei

EN

:= 1
N

and
∑

j ̸=i ej

EN

:= N − 1
N

.

To isolate the role of cost heterogeneity, I adopt a linear cost structure that maintains
tractability while preserving the key strategic trade-offs. The cost of effort in this model
has two components: a fraction ρ ∈ [0, 1] of the effort is deducted directly from the wealth,
capturing institutional frictions such as bribes, delays, or processing fees. After exerting
effort, the residual wealth is given by Ri := wi − ρei. The other component is the private
cost incurred by player i, κiei. This may reflect constraints such as time, opportunity cost,
or risk. The total marginal cost of effort, κi + ρ, shapes each player’s incentive to engage
in the contest. Although not required for the formal analysis, distinguishing between
private and common cost parameters helps interpret the results more clearly from a policy
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perspective.
As in standard contest models, I study environments where redistribution is decen-

tralized and driven by strategic effort. Under a uniform rule, the contestable pool has
two parts: (i) an endogenous component equal to a fixed fraction ϕ ∈ (0, 1] of aggregate
residual wealth SR := ∑

j Rj , and (ii) an exogenous prize V . Each player’s expected utility
is

Ui(ei, e−i) = ei

EN︸︷︷︸
win prob.

 Ri︸︷︷︸
own residual

+ ϕ
∑
j ̸=i

Rj + V

︸ ︷︷ ︸
contested pool

+
∑

j ̸=i ej

EN︸ ︷︷ ︸
lose prob.

(1 − ϕ)Ri︸ ︷︷ ︸
kept if lose

− κiei︸︷︷︸
private cost

(2.1)

In expression 2.1, a player’s effort influences payoffs in two ways. First, it increases the
probability of gaining from others’ contestable surplus, ϕ

∑
j ̸=i Rj + V , while also securing

her own residual wealth, Ri. Second, by lowering
∑

j ̸=i
ej

EN
, it reduces the probability of

losing the contest, which would otherwise entail giving up a ϕ-share of her own residual
wealth. Hence, expression 2.1 can be interpreted as the expected post-contest wealth of
player i. Rearranging terms, the utility function can be expressed as

Ui(ei, e−i) = (1 − ϕ)Ri︸ ︷︷ ︸
Secured wealth

+ ei

EN

(ϕSR + V )︸ ︷︷ ︸
Contested gains

− κiei︸︷︷︸
Private cost of effort

(2.2)

where SR := ∑
i∈N Ri. This expression aligns with standard formulations in contest

theory, where players trade off a contestable surplus against private costs. Under the
uniform redistribution rule, a fixed fraction of aggregate residual wealth is designated
as contestable, yielding the pool ϕSR + V . This surplus is allocated among players in
proportion to their relative efforts.4

Effort therefore serves a dual role: it increases a player’s share of the contestable surplus
and protects her own contestable residual wealth, ϕRi, which is included in ϕSR + V .

I abstract from individual liquidity constraints by assuming that the cost side does not
depend on initial wealth (i.e., h(·) and ai are independent of wi), so players’ effort choices
are not directly constrained by their own wealth.5 This lets us focus on how policy-driven
changes in micro-level contest efficiency shape redistribution and aggregate dissipation.

4Substituting Ri = wi − ρei gives SR = SW − ρ
∑

i ei, so the contestable pool ϕSR + V = ϕ(SW −
ρ
∑

i ei) + V . Because the −ρei terms cancel in equilibrium, the effective prize is constant and equals
P = ϕSW + V , confirming strategic equivalence with a standard Tullock contest featuring a fixed prize.

5This assumption excludes wealth from the cost side, not from the prize side. Effort can still scale
with aggregate wealth through P = ϕSW + V (cf. Proposition 1(ii)), and hence indirectly with each
player’s own wealth via SW .
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2.1 Equilibrium Characterization

This section begins by characterizing the static equilibrium of the game and the endogenous
participation. Let us first introduce players’ inefficiency in the contest.

Definition 1 (Inefficiency). The inefficiency of player i is defined as

ai := κi + ρ,

where κi denotes the player’s marginal cost and ρ is the institutional friction.

The cost parameter ai = κi +ρ reflects both private friction and institutional aggregate
dissipation. Lower values of ai indicate greater efficiency in converting effort into influence.
I will show that in equilibrium, only players with sufficiently low ai choose to participate.
The endogenous participation margin ã and the active set L—the set of players who exert
positive effort—are formally characterized as follows.

Definition 2 (Active Set). The active set L ⊆ N consists of players who exert positive
effort in equilibrium, as characterized in Proposition 1. An player i ∈ N is active if and
only if its contest efficiency ai lies below the endogenous threshold:

L := {i ∈ N : ai < ã} , where ã := 1
L − 1

∑
j∈L

aj.

I denote by L := |L| the number of active players.

While most contest models allow for cost heterogeneity but assume full participation, a
strand of the literature endogenizes participation by showing that players with sufficiently
high costs may optimally abstain, giving rise to a threshold below which only efficient
players compete. The contribution of this paper is to highlight that this threshold is
policy-dependent, and its endogenous shifts underpin novel comparative statics for reform
design—a dimension, to the best of my knowledge, absent in prior work.

The inefficiency threshold ã in Definition 2 is self-referential. As shown in the following
lemma, this is a simple fixed-point problem that admits a unique threshold and active set
for any initial distribution of inefficiencies, which is a subset of players with the lowest
inefficiencies.

Lemma 1 (Existence and Uniqueness of the Active Set and Threshold). Let N be a
finite population of N ≥ 2 players with inefficiencies {ai}i∈N . Then, there exists a unique
threshold ã ∈ R and a unique non-empty active set L ⊆ N with L ≥ 2 such that:

ã = 1
L − 1

∑
j∈L

aj and L = {i ∈ N : ai < ã}
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Before characterizing the equilibrium formally, I first define the contest strength of
individuals given the initial inefficiencies {ai}i∈N and active set L.

Definition 3 (Contest Strength). For each player i ∈ N , the contest strength is

ci := max{ã − ai, 0},

where ã is the participation cutoff. The total contest strength is

C :=
∑
j∈L

cj,

with L ⊆ N the active set.6

Finally, I proceed with the first result, which establishes that, for any distribution of
wealth and inefficiencies, the game admits a unique pure-strategy Nash equilibrium in
which participation is determined by the active set L defined above.

Proposition 1 (Equilibrium Participation, Effort, and Utility). There exists a unique
pure-strategy Nash equilibrium, characterized as follows:

(i) (Participation) player i ∈ N exerts positive effort if and only if i ∈ L, where the
active set L and threshold ã are uniquely defined as in Definition 2.

(ii) (Effort) The equilibrium effort for each player i is given by:

ei =


(

ã−ai

ã2

)
(ϕSW + V ) if i ∈ L

0 if i /∈ L
(2.3)

(iii) (Utility) Each player’s equilibrium utility is:

Ui = (1 − ϕ)wi + si(ϕSW + V ) (2.4)

where the net redistribution share is si :=
(

ci

C

)2
, with ci and C as in Definition 3.7

The proof of Proposition 1 is provided in Appendix 4.
6In equilibrium, these objects coincide:

C =
∑
j∈L

(ã − aj) = ã,

as shown in the proof of Proposition 1.
7Here si :=

(
ci/C

)2 denotes the net fraction of the contestable surplus that accrues to player i in
equilibrium (after endogenous effort costs), whereas ci/C is the gross probability share of the prize before
costs.
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Part (i), together with Definition 1 and Lemma 1 first implies that no equilibrium
exists with exactly one active player. This follows by a contradiction. Suppose there is
only one player i exerting a strictly positive effort, ei = ε > 0, while all other players
exert zero efforts. Then player i can strictly benefit from decreasing their effort to some
0 < ε′ < ε, since it yields the same payoff at a lower cost. Moreover, the case where all
players exert zero effort cannot be an equilibrium, since any player would have a profitable
deviation by exerting a small effort ε > 0 and capturing the entire contestable surplus,
which exceeds their 1

N
share of the baseline payoff without exerting effort. Moreover, Part

(i) states that a player i enters the contest if and only if

ai <
1

L − 1
∑
j∈L

aj

or, when L > 2, this is equivalent to

ai <
1

L − 2
∑

j∈L\{i}
aj

This means that in equilibrium, each player enters the contest if and only if her
inefficiency is lower than a ‘scaled average inefficiency’ of the other participants. Thus,
access to redistribution is determined solely by an player’s relative efficiency, and exclusion
arises endogenously through strategic self-selection.

Furthermore, Part (ii) states that in equilibrium, the effort of active players increases
linearly with each player’s contest strength within the active set, that is, ã − ai, while
inactive players exert no effort. Finally, Part (iii) states that in equilibrium, any player i

incurs a baseline cost of exposure to redistribution, ϕwi.

Remark 1. [Difference in redistribution shares Among Actives] The difference in redistri-
bution shares between any two active players i, j ∈ L is given by

∆sij := si − sj =
2(aj − ai)

(
ã − ai+aj

2

)
C2 (2.5)

where the term
(
ã − ai+aj

2

)
serves as a convexity multiplier. When ai, aj ≪ ã—that is,

when both players are highly efficient, or when the pair is much more efficient than the
threshold ã—even small differences in inefficiency translate into disproportionately large
differences in redistribution shares. Moreover, sj < si if and only if aj > ai; hence, the
equilibrium ranking of redistribution shares mirrors the ranking of efficiencies. Finally,
in weaker contests—characterized by lower total contest strength C—the difference in
redistribution shares between highly efficient players is further amplified.

Another aspect of contest-based redistribution is endogenous aggregate dissipation
arising from strategic effort. This captures the portion of the aggregate surplus lost as
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players expend resources to influence allocation outcomes. Formally, aggregate dissipation
is defined as the gap between the total available surplus, including initial wealth and
any exogenous transfers, and the aggregate post-contest wealth.8 The following corollary
characterizes the equilibrium aggregate dissipation.

Corollary 1 (Equilibrium aggregate dissipation). In equilibrium, the aggregate dissipation
is given by

D = δ(ϕSW + V ), where δ := 1 −
∑

i∈L c2
i

(∑i∈L ci)2 = 1 − HHI(c) ∈ [0, 1] (2.6)

Importantly, strategic aggregate dissipation depends on the distribution of contest
strength among active players. The Herfindahl–Hirschman Index (HHI) arises endogenously
in the expression for the dissipation factor δ, which measures the concentration of contest
strength within the active set. Greater concentration allows dominant players to sustain
their advantage with less effort, reducing aggregate dissipation. By contrast, when contest
strength is more evenly distributed, rivalry intensifies, leading to higher aggregate effort
and greater aggregate dissipation.

The final takeaway is that even under the linear-linear payoffs, who loses and who
wins the redistribution hinges on the redistribution intensity parameter ϕ. I discuss this
in the following remark.

Remark 2. [Winners and Losers of Redistribution] In equilibrium, redistribution benefits
only those players with sufficient contest strength. Inactive players (i /∈ L) always lose, as
they forfeit a fraction ϕ of their wealth without receiving any return; i.e., U∗

i = (1−ϕ)wi <

wi. Active players (i ∈ L) are worse off when their redistribution share falls short of their
initial contribution to the total redistributive surplus (condition 2.7). However, for any
given set of contest strengths, when the exogenous redistribution prize is sufficiently large,
any active player can gain from redistribution.

si =
(

ci

C

)2
<

ϕwi

ϕSW + V
(2.7)

2.2 Non-Monotonic Effects of Efficiency

In the central analysis of the paper, I now study how different types of contest efficiency
gains affect redistribution outcomes and aggregate dissipation. I focus on two equilibrium
objects, i.e., redistribution shares si and the dissipation factor δ. I then show that different
type of efficiency gains could affect both of these objects in a non-monotonic way.

Importantly, the non-monotonicity does not hinge on the convexity of redistribution
shares in relative strength (a feature pinned down by the chosen contest success function).

8The aggregate post-contest wealth is defined net of all effort costs.
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Rather, it is generated by two forces that arise broadly across contest models:

(i) how policy shifts the inefficiency cutoff for participation, potentially inducing entry
or exit;

(ii) how the resulting change in the cutoff—and any induced composition change—alters
participants’ relative contest strengths.

The signs of the comparative-static effects then follow from (i)–(ii). (Convexity, when
present, amplifies magnitudes of these effects but does not determine their direction.) As
discussed in Section 2.3, the economic mechanism is therefore robust to the specification
of the contest success function.

2.2.1 Redistribution shares

I consider three types of exogenous efficiency gains: (i) targeted efficiency gains for inactive
players (without inducing entry) as well as for active players (targeted reform without
inclusion); (ii) entry of previously inactive players into the active set, driven by exogenous
efficiency gains (inclusion-oriented reform); and (iii) uniform improvements in efficiency
that apply to all players (uniform reform). Propositions 2–4 characterize how targeted,
inclusion-oriented, and uniform efficiency reforms affect post-contest wealth. Table 1
summarizes the direction of these effects for different reform types.

Table 1: Direction of Redistribution-Share Changes under Different Efficiency Gain

Efficiency Gain Type Inactive Weak Active Strong Active

(1) Targeted gain to inactives (extensive margin) – – –
(2) Targeted gain to weak actives (intensive margin) – ↑ ↓
(3) Entry of inactive (participation-expanding reform) ↑ ↓ ↓
(4) Equal efficiency gain (uniform reform) – ↓ ↑

The results show that, among all forms of efficiency gains, only inclusion-oriented
reforms—those that bring previously inactive players into the competition—narrow the
wealth gap between active and inactive participants without increasing the redistribution
shares of already active players. By contrast, a uniform policy that improves the efficiency
of all players neither enables inactive players to enter nor narrows disparities within the
active set; instead, it widens the wealth gap among active participants. Consequently,
uniform efficiency gains primarily benefit the already efficient and exacerbate inequality
within the active set.

I begin with the comparative statics of redistribution shares with respect to individual
efficiency. I first consider the case in which no player is too close to the participation
threshold, i.e., there exists a sufficiently small ε such that |ã − ai| > ε for all i ∈ N .
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Proposition 2 (Comparative Statics of redistribution shares with Respect to Inefficiency).
In the equilibrium characterized by Proposition 1,

(i) (Inactive players are irrelevant off-margin) For any inactive player j /∈ L, marginal
changes in inefficiency do not affect the equilibrium redistribution shares:

∂si

∂aj

= 0 for all i ∈ N

(ii) (Own efficiency matters) For any active player i ∈ L, an increase in own inefficiency
reduces the redistribution share:

∂si

∂ai

< 0

(iii) (Relative strength governs redistribution) For any distinct pair i, j ∈ L, if player j

becomes less efficient, player i’s share rises:

∂si

∂aj

> 0

The formal proof is presented in Appendix 4. Part (i) follows directly from the
participation threshold condition and the characterization of redistribution shares. When
aj > ã, player j is inactive (j /∈ L) and exerts zero effort in equilibrium. A marginal
change in aj does not induce entry, as I consider here the non-generic case in which ã ̸= ai

for all i ∈ N ; thus, the threshold ã remains unchanged. Furthermore, redistribution shares
depend only on the distribution of inefficiencies within the active set and on the threshold
ã. Therefore, redistribution shares remain unaffected by marginal changes in off-margin
players.

For part (ii), a marginal increase ε in the efficiency of an active player i ∈ L has two
effects. First, the direct effect is to increase her contest strength, ci = ã − ai, by ε. Second,
the participation threshold ã declines by ε

L−1 , capturing the indirect effect of increased
competition.9 The net change in ci is (L−2)ε

L−1 . Thus ci is unchanged when L = 2 and
increases when L > 2. However, relative strength is ci/C, and since C falls by the same
threshold shift, ci/C rises for all L ≥ 2.10 For other active players j ̸= i, the decrease in ã

reduces their contest strength, cj = ã − aj, by ε
L−1 . This implies that the total strength

of the other active players decreases by ε. Including player i, the total contest strength of
the active set changes by

∆C = (L − 2)ε
L − 1 − ε = −ε

L − 1 < 0

9Note that I assumed that there is no player j ∈ L such that ã − ε < aj < ã for sufficiently small ε.
Thus, the active set remains unchanged.

10Intuitively, the indirect effect diminishes as the number of competing players increases.
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Consequently, player i’s redistribution share, si =
(

ci

C

)2
, increases.11

For part (iii), suppose another active player j ≠ i becomes slightly more efficient
by ε. This lowers the threshold by ε

L−1 , i.e. ã′ = ã − ε
L−1 . Player i’s contest strength

ci = ã − ai therefore falls by the same amount, c′
i = ci − ε

L−1 . By the equilibrium identity
C = ã (Proposition 1), the total strength decreases by the same amount as the threshold:
C ′ = C − ε

L−1 . Since both ci and C drop by the same absolute amount and ci < C, the
ratio ci/C becomes smaller. Hence player i’s redistribution share, si =

(
ci/C

)2
, decreases.

Therefore, relative contest strength among active players drives redistribution outcomes.
When an inactive player becomes more efficient but still does not enter, relative contest
strength of actives remains unchanged, and so does redistribution. But any efficiency
gain by an already active player raises her redistribution share and reduces those of other
actives.

The next proposition considers the case where an efficiency gain induces the entry of
an player who was previously inactive.

Proposition 3 (Entry of a Previously Inactive player). Let player i /∈ L be initially
inactive. Consider any reduction in her inefficiency, ai 7→ ai −ε that makes player i active
and denote the share of any player k ∈ N in the equilibrium as s′

k. Then:

(i) The entrant gets a strictly positive share of the contested surplus which is strictly
increasing in ε:

s′
i > 0

(ii) (Every incumbent’s share strictly declines) ∆sj := s′
j − sj < 0 for all j ∈ L.

(iii) (Inequality among incumbents widens) for any j, k ∈ L with cj > ck, the relative
share ratio increases:

s′
j

s′
k

>
sj

sk

The formal proof is in the Appendix. Let A := ∑
j∈L aj denote the total inefficiency

of the original active set, so the threshold is ã = A
L−1 . Without loss of generality, let the

prospective entrant i satisfy a0
i = ã, and suppose her inefficiency after the gain becomes

a1
i = ã − ε. The new threshold is ã′ = A+a1

i

L
. The total change in contest strength, ∆C,

consists of two parts: a reduction in the strength of already active players (the indirect
effect), and an increase due to the entrant’s contest strength ci = ã′ − a1

i (the direct effect).
11Note that even in the special case L = 2, although there is no change in player i’s contest strength,

the reduction in her rival’s strength—and thus the total contest strength—still leads to an increase in
player i’s share.
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The aggregate reduction in already-active players’ strength (the indirect effect) is:12

L(ã′ − ã) = L

(
A + a1

i

L
− A

L − 1

)
︸ ︷︷ ︸

Indirect effect on already-active players

= a1
i − ã = −ε.

Also, the entrant’s contest strength (the direct effect) is:

ã′ − a1
i︸ ︷︷ ︸

Direct effect of entrant

= L − 1
L

ε = ε
(

1 − 1
L

)
.

Therefore, the net change in total contest strength is:

∆C = −ε︸︷︷︸
Indirect effect

+ ε
(

1 − 1
L

)
︸ ︷︷ ︸
Direct effect

= − ε

L
< 0.

Entry lowers total contest strength by ε/L.13 For any already-active player, the
reduction in contest strength due to entry is the same, i.e., ã − ã′ = ε

L
. These imply

that the shares of all previously active players decline (part (ii)). The new entrant also
secures a strictly positive share proportional to her contest strength ci = ε(1 − 1/L) > 0
(part (i)). Finally, because the absolute reduction in contest strength is the same for
all already-active players, weaker players are affected more in relative terms—i.e., their
shares decline proportionally more than those of more efficient players with higher initial
contest strengths (part (iii)).

Thus, there are two changes due to inactive players entering the competition. First,
inequality between active and inactive players decreases—the entrant obtains a positive
share while the shares of already-active players decline. Second, while the redistribu-
tion shares of all already–active players decline in levels, the ratio of a highly efficient
incumbent’s share to that of a marginally active incumbent increases.

Importantly, the convexity of redistribution shares reinforces—but does not drive—
these effects. Under a lottery contest success function, shares change quadratically with
relative contest strength, and more generally remain convex when the return to effort in
the CSF is sufficiently high (see Section 2.3). Hence, under convexity, an efficiency gain
by the entrant magnifies the reduction in the shares of already active players, though the
direction of change does not depend on convexity itself.

Intuitively, when returns to effort are high—as is often the case in low-capacity states
12Here, “direct” and “indirect” refer to the decomposition of the change in total contest strength—the

entrant’s own contribution versus the aggregate loss among incumbents—rather than to components of a
single player’s ∆ck as in Section 2.2.

13This occurs because the aggregate loss of strength by incumbents (−ε) is only partially offset by the
entrant’s new strength (ε(1 − 1/L)).
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where access to resources depends heavily on individual initiative—an inclusion-oriented
reform tends to have a stronger equalizing effect, reducing the wealth gap between
inactive and active agents. In practice, however, such targeted interventions might not
be feasible. Instead, to facilitate access to public aid, policymakers more commonly
implement system-wide measures, such as digitization initiatives, institutional upgrades,
or broad capacity-building programs.

The next result shows that even symmetric interventions that uniformly lower the cost
of effort, i.e., lower each ai by ε, can lead to unequal redistribution outcomes.

Proposition 4 (Redistribution Shares under Uniform Efficiency Gains). Consider a
uniform reduction in inefficiencies such that each ai decreases by ε > 0. Then no inactive
agents become active and for each i ∈ L,

∂si

∂ε
=



> 0 if ci > c̄L

< 0 if ci < c̄L

= 0 if ci = c̄L

where c̄L is the average contest strength among active players.

The formal proof is provided in Appendix 4. A uniform efficiency improvement lowers
the participation threshold ã by Lε

L−1 , which has two implications.14

First, no inactive player becomes active, since Lε
L−1 > ε, i.e., the efficiency required

for entry rises by more than each inactive player’s own gain. Second, for each active
player k ∈ L, the reform has two opposing effects on contest strength: a direct increase of
+ε from the efficiency gain and an indirect decrease of Lε

L−1 due to the lower inefficiency
threshold for participation. Together, these yield a net change of − ε

L−1 in each active
player’s contest strength, and a total decrease of Lε

L−1 for the active set as a whole.
Consider the redistribution shares before and after the uniform efficiency improvement:

si =
(

ci

C

)2

︸ ︷︷ ︸
before reform

, s′
i =

(
ci − ε

L−1

C − Lε
L−1

)2

︸ ︷︷ ︸
after reform

Following the reform, both individual contest strengths and the aggregate contest
strength decline. Each active agent’s contest strength decreases by the same absolute
amount, ε/(L−1), implying that the total contest strength falls by L×ε/(L−1). Because
this aggregate loss scales with group size, agents who were initially stronger than average
experience a smaller proportional decline and thus see their redistribution shares rise,

14To rule out incumbent exit after the uniform reform, assume ai < ã − ε
L−1 for every i ∈ L. Indeed,

under a uniform gain I have a′
i = ai − ε and ã′ = ã − Lε

L−1 ; the no–exit requirement a′
i < ã′ is equivalent

to ai < ã − ε
L−1 .
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while weaker agents lose relatively more and their shares fall. Uniform efficiency gains
therefore reallocate rewards toward the most efficient participants. Importantly, this effect
does not rely on the convexity of contest shares with respect to relative strength, though
convexity amplifies its magnitude.

2.2.2 Aggregate dissipation

This section examines how the aforementioned efficiency reforms affect aggregate dissipa-
tion. The dissipation factor δ, defined in Corollary 1, captures the degree of concentration
in contest strengths within the active set. When contest strengths become more evenly
distributed among active players, δ increases, reflecting higher aggregate dissipation.

I again consider three types of efficiency gains: (i) targeted improvements in efficiency
for inactive players (without inducing entry) as well as for active players; (ii) inclusion-
oriented reforms that bring previously inactive players into the active set through exogenous
efficiency gains; and (iii) uniform improvements in efficiency that apply equally to all
players (uniform reform).

Table 2 summarizes the results of this section. Targeted improvements in the efficiency
of active players with low contest strength, which make the balance of strengths within
the active set more even, increase aggregate dissipation. In contrast, when a strong active
player becomes even stronger, concentration increases and aggregate dissipation decline.

Moreover, while small efficiency gains for inactive agents have no effect on aggregate
dissipation, inducing entry does. Interestingly, if the entrant’s contest strength becomes
sufficiently high, aggregate dissipation falls. Together with Proposition 3, this suggests that
a participation-expanding intervention that enables a previously inactive agent to compete
‘effectively’ can reduce both inequality and aggregate dissipation. Finally, although a
uniform efficiency gain increases inequality, it reduces aggregate dissipation whenever
contest strengths are not perfectly homogeneous. Thus, policymakers face a fundamental
trade-off between equality and efficiency in aggregate dissipation when implementing
uniform efficiency reforms.

Table 2: Direction of aggregate dissipation change under different types of efficiency
interventions.

Reform Type Feasible Change in D Condition for D ↓

(i) Targeted gain to inactives (extensive margin) 0 N/A
(ii) Targeted gain to actives (intensive margin) ↓ or ↑ Targeted active player is strong
(iii) Entry of inactives (participation-expanding) ↓ or ↑ Entrants become sufficiently efficient
(iv) Equal efficiency gains (uniform reform) ↓ Strict, unless ak = aℓ for all k, ℓ ∈ L

Proposition 5 is the comparative statics of aggregate dissipation with respect to
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inefficiencies, characterizing how changes in an individual player’s inefficiency affect
aggregate dissipation. I hold participation fixed here by assuming ai ̸= ã for all i ∈ N .

Proposition 5 (Individual Efficiency and aggregate dissipation). Suppose ai ̸= ã for all
i ∈ N . Then:

(i) (extensive margin efficiency gain) For any player j /∈ L, changes in inefficiency have
no effect on aggregate dissipation:

∂D
∂aj

= 0

(ii) (intensive-margin efficiency gain) For any player j ∈ L, the direction of the effect
depends on relative contest strength. Specifically:

∂D
∂aj

> 0 iff cj

C
>

δ

L − 1 (2.8)

Proof is available in Appendix 4. Part (i) states that if player j /∈ L, then a marginal
change in her inefficiency aj leaves equilibrium aggregate dissipation unchanged. The
assumption ai ̸= ã for all i ∈ N rules out marginal cases where infinitesimal changes in
inefficiency could induce entry, ensuring that the active set L remains fixed. As a result,
a marginal change in the inefficiency of an inactive player aj does not affect either the
participation threshold ã or the contest strengths of active players (part (i)). This follows
directly from the definition of ã in Lemma 1. So, part (i) says that no extensive-margin
efficiency-enhancing intervention is effective.

When j ∈ L, the effect of a change in aj on aggregate dissipation depends on the
player’s relative position within the active set (part (ii)). A decrease in aj has two
conceptually distinct components. First, the net own–effect (after accounting for the
induced change in ã) on player j’s contest strength is

∆cj = (L − 2) ε

L − 1 ,

which raises her equilibrium effort.15 Second, there is a system–wide effect on the other
incumbents: because ã falls by ε/(L − 1), every k ̸= j experiences

∆ck = − ε

L − 1 .

15If I separate the pure “own” move from the feedback through the cutoff, then cj = ã − aj gives
∆cj = (∆ã) − (∆aj) =

(
− ε

L−1
)

− (−ε) = (L−2)ε
L−1 . Thus the stated ∆cj already includes the threshold

feedback.
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The net impact on aggregate dissipation then depends on j’s initial strength: when j is
relatively strong (large cj/C), the reform reduces dissipation; when j is weak, it raises
dissipation.

More specifically, intensive-margin interventions reduce aggregate dissipation if and
only if the targeted active player’s relative contest strength exceeds a threshold determined
by the pre-policy dissipation factor and the size of the active set (condition 2.8). When
aggregate dissipation is already high—that is, when δ is large—only a few very strong
active players satisfy this condition, meaning that efficiency improvements for most actives
will no longer reduce aggregate dissipation. Therefore, the higher the initial aggregate
dissipation, the narrower the set of active players for whom targeted efficiency gains are
effective in lowering aggregate dissipation.

Remark 3. While the extensive-margin interventions are not effective, intensive-margin
policies entail trade-offs. Enhancing the efficiency of weaker participants reduces inequality
but increases aggregate dissipation, whereas improving the efficiency of stronger participants
lowers aggregate dissipation but widens inequality.

Proposition 6 shows that participation-expanding interventions—i.e., inclusion-oriented
interventions—can reduce strategic aggregate dissipation, especially when the entrant is
sufficiently efficient. Without loss of generality, I consider here a player whose inefficiency
is initially at the participation threshold, aj = ã, who receives an efficiency gain ε > 0 (so
that a′

j := aj − ε).

Proposition 6 (Effective Entry Reduces aggregate dissipation). Suppose the inefficiency
of an inactive player j—whose inefficiency is initially at the participation threshold
aj = ã—is reduced by ε > 0. Then:

(i) For any ε > 0, player j becomes active.

(ii) Post-entry aggregate dissipation is lower than pre-entry aggregate dissipation if and
only if

ε > Ac̄L δ (2.9)

where δ denotes the dissipation factor before entry, c̄L is the average of contest
strength of actives before entry, and A := 2

L−1
L

+ δ
L2

. When condition 2.9 holds,
aggregate dissipation D decreases monotonically with respect to the entrant’s efficiency
gain ε.

Proof is provided in Appendix 4. There are a few forces at play here. Entry tends
to increase aggregate dissipation, since an additional active player tend to intensify
competition and increase total effort.
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Entry also reshapes the distribution of contest strength by tightening the participation
threshold, i.e, by lowering ã. Specifically, the entry of player j increases the bar of
competition; thereby uniformly reducing the contest strength of all already-active players.
This reduction disproportionately weakens the weaker active players relative to the stronger
ones. Moreover, the more efficient the entrant becomes, the wider the gap in relative
strength among the already active players.

For example, consider an active set with two players whose contest strengths are 4
and 10 (a 10:4 ratio). If entry reduces each incumbent’s contest strength by 1, the new
ratio becomes 9 : 3. If the entrant is stronger so that the reduction equals 2, the ratio
becomes 8:2. In the latter case, the relative-strength gap widens, further weakening the
incentives of weaker active players to exert effort. This mitigating force could offset the
competition effect and lowers overall aggregate dissipation, particularly when the entrant
becomes sufficiently efficient.

The effect of entry on aggregate dissipation also depends on the pre-entry concentration
of contest strength within the active set. To illustrate, lets hold ε fixed—i.e., keep the
entrant’s contest strength constant—and suppose the active set initially contains two
players with contest strengths 1 and 10 (a 1:10 ratio). If entry reduces each actives’ strength
by 0.5, the ratio of relative strengths after entry becomes 0.5:9.5 = 1:19. However, if the
initial strengths were 1 and 100 instead, the same reduction would yield 0.5:99.5 = 1:199.

In the latter case, the gap in contest strength between the strong and weak actives
widens further after entry. This, in turn, further weakens the weak active player’s incentive
to exert effort, leading to a greater reduction in aggregate dissipation. In general, when
the initial heterogeneity in efficiency within the active set is sufficiently high, the disparity-
increasing effect of entry can outweigh its competition-intensifying effect, leading to a net
reduction in aggregate dissipation (Figure 3). This, in turn, makes participation-expanding
interventions less dissipative when a few entrenched elites dominate the active set.

Precisely, the aforementioned economic intuitions are captured by condition 2.9.
The entrant’s efficiency gain should exceed a threshold given by the right-hand side
of condition 2.9. Regarding the right-hand side of condition 2.9, two insights follow.
First, holding the entrant’s strength fixed, entry can reduce aggregate dissipation when
the average contest strength among actives (cL) is sufficiently low. Second, aggregate
dissipation also falls when pre-entry aggregate dissipation (δ) is sufficiently low—or,
equivalently, when contest strength is highly concentrated among a few players.

Finally, the coefficient A captures the size effect—that is, how responsive aggregate
dissipation is to the entry of a new participant. Formally, the coefficient

A(L) = 2
L−1

L
+ δ

L2

is strictly decreasing in the number of actives L. A larger A (small L) means a larger
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Figure 3: Post-entry concentration HHI(ε) for L = 100 with ci ∼ TruncNormal[0, 1](µ =
0.5, σ). Solid curves: σ ∈ {0.10, 0.20, 0.30}. Dashed line: pre-entry HHI(0) from the
σ = 0.20 draw.

efficiency gain ε is required to reduce dissipation; entry is thus harder to make dissipa-
tion–reducing in small groups.

Remark 4. (No Equity–Efficiency Trade-off) Taken together with Proposition 3, these
results imply that participation-expanding reforms that make entrants sufficiently efficient
can reduce both aggregate dissipation and inequality between actives and inactives. This
stands in contrast to the conventional view of an equity–efficiency trade-off. Importantly,
such inclusion-oriented policies are most effective in settings where a few elites dominate
the competition for redistribution.

Finally, I turn to uniform efficiency reforms. The next proposition shows that a
uniform reduction in inefficiency among all active players unambiguously reduces aggregate
dissipation, except in the case of perfect symmetry, where all active players are equally
efficient.

Proposition 7 (Uniform Efficiency Gains Reduce aggregate dissipation). Suppose that
each active player experiences a uniform efficiency gain of magnitude ε > 0. Then:

dD
dε

≤ 0,

with equality if and only if the contest is perfectly symmetric—that is, ak = aℓ for all
k, ℓ ∈ L.

The formal proof is provided in Appendix 4. The underlying intuition is straightforward.
As shown in Proposition 4, a uniform efficiency gain does not induce entry; rather, it either
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leaves the active set unchanged or removes some weaker actives from competition by raising
the bar for participation,i.e., by lowering the inefficiency threshold. For the remaining
players, the uniform reform therefore reduces each participant’s contest strength by the
same absolute amount. Since these reductions apply uniformly, stronger participants—
those with higher ci—lose proportionally less in relative terms. Consequently, relative
contest strength becomes more concentrated, thereby reducing aggregate dissipation.

Remark 5. While participation-expanding reforms could reduce both inequality and dis-
sipation, uniform reforms inherently entail a trade-off between them, i.e., it increases
inequality but lowers dissipation.

2.3 Robustness

The threshold-shifting mechanism is not tied to the linear–lottery benchmark. It arises
in any contest with endogenous participation and heterogeneous efficiency where effort
determines relative shares. Linear success functions and linear effort costs serve only to
obtain closed-form expressions for post-redistribution wealth. These assumptions simplify
exposition without changing the qualitative logic. More general contest technologies
generate the same strategic forces, with convex redistribution shares merely amplifying
them.

Uniform efficiency gains can paradoxically narrow, rather than broaden, participation.
In contests where effort translates resources into redistributive advantage, equilibrium
features a participation cutoff: only agents with inefficiency below this threshold exert
positive effort. The cutoff adjusts so that the marginal participant is indifferent between
entering and abstaining. When all costs fall uniformly, each agent raises effort to preserve
relative standing, raising aggregate effort and intensifying competition. The resulting
escalation shifts the indifference condition downward, tightening participation even as
access costs fall equally for all.

Convex costs and strategic substitutability reinforce this tightening effect. When
everyone becomes more efficient, all players expand effort, but efficient agents do so
disproportionately because their lower base costs allow further escalation despite rising
marginal costs. Their stronger response reweights the active set toward efficient players,
lowering the cost-weighted mean inefficiency among participants. The equilibrium cutoff
moves proportionally to this change: it falls whenever the average inefficiency of active
players declines. As composition shifts toward greater efficiency, equilibrium requires a
lower cutoff, leading to a more selective and unequal contest.

These forces extend beyond the benchmark specification. The generalized framework
below introduces arbitrary concave success functions and convex effort costs and shows
formally that the same threshold-shifting logic—and the associated equity–efficiency
trade-off—persists under broad conditions.
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2.3.1 Generalized framework

Consider a decentralized distribution with payoffs

Ui(e) = (1 − ϕ)wi + P pi(e) − ai h(ei), pi(e) = f(ei)∑
k f(ek) (2.10)

where P = ϕSW + V is the redistributive surplus, pi(e) is the share of player i, f, h are
twice continuously differentiable, strictly increasing, and satisfy f ′ > 0, f ′′ ≤ 0, h′ > 0,
h′′ ≥ 0, and the parameter ai > 0 is player i’s inefficiency. The baseline specification is
f(e) = e and h(e) = e.16

2.3.2 Monotonicity and the participation cutoff

For any active player (ei > 0), the first-order condition is

PΞi(e) = ai h′(ei) (2.11)

where Ξi(e) = f ′(ei)∑
k

f(ek)(1−πi) is the marginal benefit from the effort, and πi = f(ei)∑
k

f(ek)
is the share of i from total effort. The right-hand side increases in ei (since h′′ ≥ 0),
while the left-hand side decreases in ei (since f ′′ ≤ 0 and the residual term 1 − πi falls
with ei). Hence, for fixed e−i and ai, there is at most one interior solution. Moreover,
e∗

i (ai; e−i) > 0 if and only if PΞi(0) > ai h′(0), which defines a unique participation cutoff
ã with e∗

i (ai; e−i) > 0 if and only if ai < ã, and e∗
i decreases continuously in ai on (0, ã).

2.3.3 Implicit characterization of the cutoff

Let L(ã) = {i : ai < ã} be the active set and F = ∑
k∈L f(ek). Summing (2.11) over

i ∈ L(ã) yields the aggregate interior FOCs

PΞ(ã) =
∑

i∈L(ã)
aih

′(ei). (2.12)

where Ξ(ã) := ∑
i∈L(ã)

f ′(ei)
F

(1 − πi). Under standard concavity (e.g. Rosen’s DSC), the
active-set game admits a unique, continuously differentiable equilibrium e∗

L(ã). Substitut-
ing e∗

L(ã) into (2.12) gives

Hint(ã) = P
∑

i∈L(ã)

f ′(e∗
i )

F ∗ (1 − π∗
i ) −

∑
i∈L(ã)

aih
′(e∗

i ) = 0, (2.13)

which aggregates the interior FOCs; and for a fixed L(ã), I have Hint(ã) ≡ 0.
16I again abstract from individual liquidity constraints so that the cost side aih(ei) does not depend on

wi, i.e., effort is not directly constrained by own wealth.

26



Uniform and Participation-expanding Reforms in Decentralized Redistribution: Who
Gains and Who Loses?

Let denote ∂ei
Ξi(e∗) := P

f ′(e∗
i )

F ∗ (1 − π∗
i ). The cutoff is determined by the boundary

KKT condition for the marginal participant. Let j be such that aj = ã and e∗
j = 0. Then,

I have P ∂ej
Ξj(0+, e∗

−j) = ã h′(0). Hence,

ã = P

h′(0) ∂eΞ
(
0+, e∗

−(ã)
)

, (2.14)

Under monotone ∂eΞ and single–crossing in a, the equilibrium boundary condition defines
a one-dimensional fixed point. After substituting the equilibrium active-set mapping
L(ã) = {i : ai < ã} and the corresponding equilibrium effort vector e∗

−(ã) into (2.14), I
obtain

G(ã) := P

h′(0) ∂eΞ
(
0+, e∗

−(ã)
)

On any interval where L(ã) is fixed, e∗
−(ã) varies smoothly with ã, and the total

contest effort increases as less efficient agents enter, implying ∂eΞ(0+, e∗
−(ã))—and hence

G(ã)—decrease strictly. At each inefficiency threshold where a new player enters, G(ã)
decreases by a discrete step. Thus G(ã) is strictly decreasing (piecewise continuous with
downward jumps), ensuring a unique solution to ã = G(ã). 17

2.3.4 Uniform efficiency reforms and threshold shifts

Consider a uniform efficiency reform indexed by ε, with dai/dε = −1 for all i. Let the
active set L(ã) be locally fixed (no knife-edge agents). The interior equilibrium condition
equating total marginal benefits and marginal costs can be written as

Hint(ã, ε) = P Ξ(ã, ε) −
∑

i∈L(ã)
ai h′(e∗

i ) = 0 (2.15)

In Appendix 4, I show that near a reference equilibrium, the aggregate term Ξ(ã, ε) admits
the local approximation

Ξ(ã, ε) ≈ C̃0

S∗(L(ã), ε) , S∗(L(ã), ε) =
∑

i∈L(ã)
e∗

i (ε)

where C̃0 > 0 is a local scaling constant capturing the curvature of the contest success
function. The inverse dependence on S∗ reflects that as total effort increases, each player’s
marginal impact on the aggregate probability share Ξ declines proportionally: contest
success depends on total intensity rather than its internal allocation.

17In the linear–lottery case f(e) = e, (2.14) reduces to the identity ã = ã on any fixed-L interval;
the global monotonicity comes from the endogenous change in L(ã), recovering the closed-form ã =

1
L−1

∑
j∈L aj .
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Moreover, the marginal boundary condition for the cutoff player satisfies

Hbnd(ã, ε) = P C̃0

S∗(ε) − ã = 0 ⇐⇒ ã S∗(ε) = P C0,

where S∗(ε) denotes total equilibrium effort. This expresses the indifference of the marginal
agent with inefficiency a = ã: her cost times total contest intensity equals the effective
prize constant. Differentiating with respect to ε gives

dã

dε
= − ã

S∗(ε)
dS∗

dε

If a reform raises total effort (dS∗/dε > 0), the effective prize term PC̃0/S∗ falls and the
cutoff decreases (dã/dε < 0): competition tightens and entry becomes harder. If total
effort falls, the cutoff relaxes. So a more-than-one-for-one cutoff response (one of the main
forces deriving the results) occurs when

∣∣∣∣dã

dε

∣∣∣∣ > 1 ⇐⇒ ã

S∗

∣∣∣∣dS∗

dε

∣∣∣∣ > 1 (2.16)

That is, a more–than–one–for–one cutoff response arises when the baseline contest is
already tight—meaning that participation is highly selective, with the marginal inefficiency
ã large relative to aggregate effort (ã/S∗)—or when aggregate effort is highly elastic to
the reform parameter (|dS∗/dε| is large). In such environments, even small shifts in the
participation threshold can trigger disproportionately large changes in aggregate effort, as
the equilibrium must restore the marginal indifference condition for the cutoff agent.

More rigorously, in Appendix 4, I show that the interior balance condition can be
rewritten as

Hint(ã, ε) ≈ P C̃0

S∗(L(ã), ε) − āh = 0, āh :=
∑

i∈L(ã) aih
′
i∑

i∈L(ã) h′
i

,

where āh is the cost-weighted mean inefficiency among active players. Differentiating
yields

dāh

dε
≈ − P C̃0

(S∗)2
dS∗

dε
.

Combining both derivatives implies

dã

dε
= − ã

dāh

dε

S∗

P C̃0
= C0

C̃0

dāh

dε
,

where C̃0 = 2C0 as shown in Appendix 4, which obtains
∣∣∣∣dã

dε

∣∣∣∣ = 1
2

∣∣∣∣dāh

dε

∣∣∣∣ (2.17)
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Thus, a more than one-to-one cutoff shift, i.e.,
∣∣∣∣dã

dε

∣∣∣∣ > 1 implies a proportionally large
change in the average cost composition of the active set.

Under convex costs (h′′ > 0) and a fixed active set, differentiating the definition of āh

with respect to ε also yields

dāh

dε
∝

∑
i∈L(ã)

(ai − āh) h′′(e∗
i )

de∗
i

dε
(2.18)

where the proportionality abstracts from a positive normalization factor ∑i h′(e∗
i ). This

expression follows directly from the quotient-rule differentiation of āh =
∑

i
aih

′(e∗
i )∑

i
h′(e∗

i ) , which
captures how the cost weights h′(e∗

i ) shift as equilibrium efforts respond to the reform.
Intuitively, āh declines when efficient players (ai < āh) expand effort more strongly, since
convex costs (h′′ > 0) assign greater influence to high-effort agents in the weighted average.
The aggregate response of āh therefore reflects the heterogeneity of individual effort
adjustments.

According to Equation (2.17), a large negative dã/dε arises when efficient participants
(ai < āh) increase effort sharply (de∗

i /dε > 0), while less efficient players adjust little or
reduce effort. When Condition (2.16) holds, a uniform efficiency reform widens the gap
ai − āh, making the right-hand side of Equation (.19) positive. To re-establish equilibrium,
the most efficient agents—who carry the largest weights under convex costs—must expand
effort further. This feedback magnifies inequality among active players, consistent with
the amplification effect of uniform reforms derived in the benchmark model.18

2.4 Further Discussion: wealth–efficiency alignment

So far, I have shown how reforms affect the distribution of shares in the redistribution
process. This perspective is most relevant when wealth inequality arises mainly from
the redistribution shares itself—for instance, when pre-existing wealth differences are
small compared to a large exogenous contested surplus, such as public funds or natural
resources.

However, in settings where redistribution relies heavily on agents’ wealth or where
players can invest in efficiency, another key factor becomes important: the alignment
between wealth and efficiency. In these cases, inequality depends not only on who
participates, but also on whether the wealthy are the most efficient or whether efficiency
is concentrated among the less wealthy. The mechanism described in Section 4 provides a
basis for qualitatively discussing how uniform and participation-expanding reforms affect
inequality and dissipation when wealth–efficiency alignment matters.

When wealth and efficiency are positively correlated, and individuals can use wealth
18Under standard single-crossing and strategic-substitute conditions, de∗

i /dε > 0, and responsiveness
declines with ai.
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to enhance efficiency, the core mechanism of this paper is reinforced: uniform reforms
intensify inequality, while targeted inclusion remains the most effective corrective. For
example, when wealth and efficiency move closely together, redistribution operates in a
diverging-inequality regime. Wealthy agents are also efficient, entering with both higher
endowments and greater ability to capture the surplus. Because contest shares increase
with efficiency, post-contest wealth compounds initial advantages—the same agents who
start ahead also secure larger redistributive gains. Uniform reforms, such as across-the-
board reductions in access costs or bureaucratic frictions, amplify this imbalance by
disproportionately benefiting already dominant players. The result is a further widening of
inequality. In contrast, targeted policies that raise the efficiency or participation of weaker
agents can offset this effect by broadening the active set and redistributing contest power.
Even small-scale entry by near-threshold participants can slightly compress inequality, as
their inclusion dilutes the dominance of incumbent elites.

In contrast, when wealth and efficiency are negatively correlated, redistribution op-
erates in a self-correcting regime. Here, poorer agents are more efficient, and richer
agents are less effective competitors. In such environments, redistribution naturally flows
downward, as efficient but initially disadvantaged players capture surplus from ineffi-
cient elites. The same uniform reforms that exacerbate inequality under alignment now
reduce it: efficiency gains disproportionately benefit the poorer, high-efficiency agents,
compressing disparities. Conversely, entry by wealthy but inefficient players shifts surplus
upward, potentially reversing equalization. Targeted support for efficient but low-wealth
participants strengthens the equalizing effect, while assistance to inefficient incumbents
undermines it.

These contrasting regimes highlight a key extension of the model: under substantial
initial inequality, the redistributive impact of reform depends critically on the underlying
wealth–efficiency alignment. When the rich are also efficient—and especially when they
can convert wealth into efficiency—the threshold-shifting mechanism is reinforced: uniform
reforms deepen inequality, and targeted or participation-expanding policies remain the
only effective correctives. When the poor are more efficient, competition itself acts as
a stabilizing force, making uniform reforms equalizing rather than divergent. In such
settings, uniform reforms can simultaneously reduce inequality and aggregate dissipation.

Thus, the same policy can yield opposing outcomes depending on whether efficiency
advantages reinforce or offset wealth disparities. This extends the model’s central insight:
even when participation is held fixed, the correlation between wealth and efficiency
determines whether redistribution amplifies or mitigates inequality. Recognizing this
alignment is essential for designing reforms that expand opportunity without entrenching
advantage.

Table 3 summarizes these insights. It shows how the effects of uniform and participation-
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expanding reforms depend on whether the underlying wealth–efficiency alignment is
positive (reinforcing) or negative (offsetting). Desirable policy configurations—those that
simultaneously reduce both inequality and dissipation—are highlighted in blue.

Table 3: Policy Effects under Wealth–Efficiency Alignment Regimes

Policy Type Positive Align. Negative Align. Effect on Mech.

Ineq. Diss. Ineq. Diss. (Sec. 2.2)

Uniform Reform ↑ ↓ ↓ ↓ Reinforcing

Participation-Expanding ↓ ↓ (if entrant strong) ↓ ↑ (if entrant weak) Offsetting

3 Conclusion

This paper has developed a simple theoretical framework in which redistribution emerges
from decentralized contestation over a common surplus. Players differ in their strategic
efficiency and choose endogenously whether to incur costly effort to appropriate or defend
wealth. As a result, participation is selective, and redistributive outcomes are shaped not
only by formal policy parameters but also by the distribution of effort capacity and the
structure of strategic interaction.

The analysis delivers two main results. First, uniform efficiency gains—such as across-
the-board reductions in bureaucratic frictions or access costs—can backfire. By tightening
the endogenous participation threshold, these reforms fail to bring new players into the
contest and instead amplify the strategic advantage of already active, highly efficient
agents. Inequality among beneficiaries rises even as aggregate dissipation falls, generating
an endogenous equity–efficiency trade-off. Second, participation-expanding interventions
that move marginal agents across the entry threshold can jointly improve equity and
efficiency. By enlarging the active set and diluting concentrated contest power, such
reforms reduce both inequality and dissipation, particularly when entrants are sufficiently
efficient and pre-reform contest strength is highly concentrated.
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4 Appendix

Proof of Proposition 1. Step 1 (Individual optimization). Each player i ∈ N chooses
effort ei ≥ 0 to maximize utility in (2.4), taking E−i = ∑

j ̸=i ej as given, with total effort
EN = ei + E−i. The utility in Equation (2.2) can be written as

Ui(ei; E−i) = (1 − ϕ)wi + P ei

ei + E−i

− aiei, where P := ϕSW + V

denotes the total contestable surplus.19

Player i’s problem is therefore

max
ei≥0

{
(1 − ϕ)wi + P ei

ei + E−i

− aiei

}
.

For P > 0, the objective is strictly concave since

∂2Ui

∂e2
i

= − 2PE−i

(ei + E−i)3 < 0.

Hence, the first-order condition is sufficient for a unique optimum, and the KKT conditions
imply

P (EN − e∗
i )

E2
N

− ai ≤ 0, e∗
i ≥ 0, e∗

i

(
P (EN − e∗

i )
E2

N

− ai

)
= 0.

Whenever e∗
i > 0, the first condition holds with equality:

P (EN − e∗
i )

E2
N

= ai.

Step 2 (Precluding trivial equilibria). Any pure-strategy Nash equilibrium must
involve at least two active players.

19Equation (2.2) may appear different because ϕSR + V depends on effort through SR = SW − ρEN .
Substituting Ri = wi − ρei cancels the ρei terms, giving Ui = (1 − ϕ)wi + ei

EN
(ϕSW + V ) − (κi + ρ)ei,

which is equivalent to the above expression.
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Case 1: No active players. If all players choose ej = 0, each receives P/N . A unilateral
deviation by any i to a small effort ei = ε > 0 yields

Ui(ε) = (1 − ϕ)wi + P − aiε > (1 − ϕ)wi + P/N

for sufficiently small ε. Thus, EN = 0 cannot be an equilibrium.

Case 2: One active player. If only player i is active, EN = ei and Ui(ei) = (1 − ϕ)wi +
P − aiei. Since the prize P is independent of ei, player i can profitably reduce effort,
lowering cost without changing payoff. Hence, no equilibrium with a single active player
exists.

Any equilibrium must therefore feature an active set L ⊆ N with L := |L| ≥ 2.

Step 3 (Equilibrium effort and participation). For any i ∈ L, the first-order
condition with equality implies

P (EN − ei) = aiE
2
N .

Summing over all active players gives

P (L − 1)EN = E2
N

∑
j∈L

aj ⇒ E∗
N = P (L − 1)∑

j∈L aj

.

Define the participation threshold

ã := 1
L − 1

∑
j∈L

aj, so that E∗
N = P

ã
.

Substituting into the first-order condition yields each active player’s equilibrium effort:

e∗
i = P (ã − ai)

ã2 > 0, i ∈ L, e∗
j = 0, j /∈ L.

Hence, player i is active iff ai < ã, so the active set is

L = { i ∈ N : ai < ã }.

Lemma 1 ensures that the participation threshold ã and active set L are unique. Given L,
strict concavity of Ui in ei implies a unique equilibrium vector e∗.

Step 4 (Equilibrium utility). For any inactive player j /∈ L,

U∗
j = (1 − ϕ)wj.
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For any active i ∈ L, substituting the equilibrium effort into the utility function gives

U∗
i = (1 − ϕ)wi + P

(
e∗

i

E∗
N

)2

,

where
e∗

i

E∗
N

= ã − ai

ã
= ci

ã
, ci := max{ã − ai, 0}, C :=

∑
j∈L

cj = ã.

Thus, the equilibrium redistribution share is

si :=
(

ci

C

)2
, U∗

i = (1 − ϕ)wi + si(ϕSW + V ),

for all i ∈ N .

Proof of Corollary 1. Aggregate dissipation, denoted by D, measures the total cost in-
curred by all active players in equilibrium. Let L be the set of active players, and let
P = ϕSW + V denote the total contestable surplus. Then

D =
∑
i∈L

aie
∗
i .

From the first-order condition derived in Proposition 1, each active player satisfies
ai = P

E∗
N −e∗

i

(E∗
N )2 . Substituting this into the expression above gives

D =
∑
i∈L

(
P

E∗
N − e∗

i

(E∗
N)2

)
e∗

i = P

(E∗
N)2

∑
i∈L

(
E∗

Ne∗
i − (e∗

i )2
)

= P

(E∗
N)2

(
E∗

N

∑
i∈L

e∗
i −

∑
i∈L

(e∗
i )2
)

.

Since total effort is E∗
N = ∑

i∈L e∗
i , this simplifies to

D = P

(
1 −

∑
i∈L(e∗

i )2

(E∗
N)2

)
.

The ratio ∑i∈L(e∗
i )2/(E∗

N)2 represents the Herfindahl–Hirschman Index (HHI) of equilib-
rium effort shares, capturing how concentrated the contest is among active players. From
Proposition 1, individual effort is proportional to each player’s contest strength, e∗

i = k ci

where k = P/ã2 and ci = ã − ai. Substituting this proportionality yields
∑

i∈L(e∗
i )2

(E∗
N)2 =

∑
i∈L(kci)2

(∑j∈L kcj)2 =
∑

i∈L c2
i

(∑j∈L cj)2 =: HHI(c).
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Replacing this term in the expression for D gives a simple and intuitive form:

D = P [1 − HHI(c)] = δ (ϕSW + V ), where δ := 1 − HHI(c).

Thus, aggregate dissipation is proportional to the contestable surplus, scaled by one minus
the concentration of contest strength among the active players.

Proof of Proposition 2 (Comparative statics of redistribution shares). (i) Inactive play-
ers. Let k /∈ L. A marginal change in ak does not affect the equilibrium provided it does
not induce entry, i.e. as long as ak > ã. The participation threshold ã, individual contest
strengths ci, and total contest strength C therefore remain unchanged.

It follows immediately that

∂si

∂ak

= 0 for all i ∈ N .

(ii) Own inefficiency. Let i ∈ L. The derivative of si = (ci/C)2 with respect to ai is

∂si

∂ai

= 2ci

C
· (∂ci/∂ai)C − ci(∂C/∂ai)

C2 .

Since ã = 1
L−1

∑
j∈L aj,

∂ã

∂ai

= 1
L − 1 ,

∂ci

∂ai

= ∂ã

∂ai

− 1 = − L − 2
L − 1 ,

∂C
∂ai

= ∂ã

∂ai

= 1
L − 1 .

Substituting these expressions gives

∂si

∂ai

= 2ci

C3

[(
−L − 2

L − 1

)
C − ci

( 1
L − 1

)]
= − 2ci

(L − 1)C3 [(L − 2)C + ci] .

Because L ≥ 2, ci > 0, and C > 0, the term in brackets is strictly positive. Hence ∂si

∂ai
< 0:

an increase in a player’s inefficiency reduces her redistribution share.
(iii) Cross effects. Let j ∈ L with j ̸= i. The derivative of si with respect to aj is

∂si

∂aj

= 2ci

C3 [(∂ci/∂aj)C − ci(∂C/∂aj)] .

Here
∂ci

∂aj

= ∂ã

∂aj

= 1
L − 1 ,

∂C
∂aj

= 1
L − 1 .

Substituting these gives
∂si

∂aj

= 2ci

(L − 1)C3 (C − ci).

Since ci < C for any active i when L ≥ 2, I have (C − ci) > 0, implying that ∂si

∂aj
> 0. Thus,
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improving another active player’s efficiency (reducing aj) lowers si, whereas increasing aj

benefits the others.

Proof of Proposition 3 (Entry of a previously inactive player). Let the initial state con-
sist of an active set L of size L with threshold ã. Pick a marginally inactive player i

with ai = ã (knife–edge)20 and suppose her inefficiency falls to a′
i = ã − ε for some ε > 0.

Assume ε is small enough that no incumbent exits, i.e.

ε < L
(

ã − max
j∈L

aj

)
,

so that aj < ã − ε/L for all j ∈ L and the new active set is L′ = L ∪ {i} of size L + 1.21

New threshold and total strength. The post–entry threshold is

ã′ = 1
L

∑
j∈L

aj + a′
i

 = 1
L

((L − 1)ã + (ã − ε)) = ã − ε

L
.

Since total contest strength equals the threshold in equilibrium, C ′ = ã′ = ã − ε/L.

(i) Entrant’s share. The entrant’s strength and share are

c′
i = ã′ − a′

i = ε
(

1 − 1
L

)
> 0, s′

i =
(

c′
i

C′

)2
> 0,

both increasing in ε.

(ii) Incumbents’ shares. For j ∈ L,

c′
j = ã′ − aj = cj − ε

L
, s′

j =
(

c′
j

C′

)2
.

Hence

∆sj =
(

cj − ε/L

ã − ε/L

)2

−
(

cj

ã

)2
=

(cj ã − ε
L

(ã − cj))2 − (cj ã)2

(ã − ε/L)2ã2 < 0,

because 0 < cj < ã and ε > 0 imply the numerator is negative. Thus every incumbent’s
share strictly declines.

20Equivalently, start with ai > ã but arbitrarily close; the limiting argument is identical.
21This is the standard “generic separation / no knife–edge incumbent” condition used throughout

(see the assumption preceding Proposition 2). It ensures local stability of the active set under small
perturbations.
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(iii) Inequality among incumbents. For j, k ∈ L with cj > ck,

s′
j

s′
k

=
(

cj − ε/L

ck − ε/L

)2

is strictly increasing in ε,

since the mapping x 7→ (x − ε/L)/(y − ε/L) is increasing in ε whenever x > y > ε/L.
Therefore, although all incumbents’ levels fall, the ratio of strong to weak shares rises:
entry widens inequality among actives.

Proof of Proposition 4 (Redistribution shares under uniform efficiency gains). Consider a
uniform reduction in inefficiency by ε > 0, which changes each player’s parameter to
a′

k = ak − ε.

(i) Effect on participation. A player j enters the contest if their new inefficiency a′
j

lies below the new participation threshold ã′. Initially, for an inactive player aj ≥ ã, I
have a′

j = aj − ε. The new threshold for an active set of size L is

ã′ = 1
L − 1

∑
i∈L

a′
i = ã − Lε

L − 1 .

Entry requires
aj − ε < ã − Lε

L − 1 ⇐⇒ aj − ã < − ε

L − 1 .

Because any inactive player satisfies aj ≥ ã, the inequality cannot hold. Hence, no inactive
player enters following a small uniform gain.

Similarly, an active player i ∈ L exits if a′
i ≥ ã′, or equivalently

ai − ã ≥ − ε

L − 1 .

Since ai − ã < 0 for all actives and the right-hand side approaches zero as ε → 0, this
condition is not met for sufficiently small ε. Therefore, under a sufficiently small uniform
efficiency gain, no exits or entries occur, and the active set L of size L ≥ 2 remains
unchanged.

(ii) Effect on redistribution shares. Within the unchanged active set, each player’s
cost becomes a′

i = ai − ε. The new contest strength for i ∈ L is

c′
i = ã′ − a′

i =
(

ã − Lε

L − 1

)
− (ai − ε) = ci − ε

L − 1 ,
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and total contest strength is

C ′ =
∑
i∈L

c′
i = C − Lε

L − 1 .

To assess the impact on redistribution shares si = (ci/C)2, differentiate with respect
to ε and evaluate at ε = 0:

∂si

∂ε

∣∣∣∣
ε=0

= 2ci

C3

(
C ∂c′

i

∂ε

∣∣∣∣
ε=0

− ci
∂C ′

∂ε

∣∣∣∣
ε=0

)
.

Since ∂c′
i

∂ε
|ε=0 = − 1

L−1 and ∂C′

∂ε
|ε=0 = − L

L−1 , I obtain

∂si

∂ε

∣∣∣∣
ε=0

= − 2ci

(L − 1)C3 (C − Lci).

Because the average contest strength is c̄ = C/L, the term in parentheses equals L(c̄ − ci),
giving

∂si

∂ε

∣∣∣∣
ε=0

= − 2Lci

(L − 1)C3 (c̄ − ci).

An efficiency gain reduces all ai, so a positive ε corresponds to a smaller cost parameter.
The sign of the derivative therefore depends on (ci − c̄): players whose contest strength
exceeds the average (ci > c̄) experience an increase in their redistribution share, while
those below the average see their share fall.

Hence, a uniform efficiency gain leaves participation unchanged but amplifies inequality
among active players’ redistribution shares.

Proof of Proposition 5 (Individual efficiency and aggregate dissipation). The active set L
is assumed to be fixed.

(i) Inactive players (j /∈ L). Aggregate dissipation is given by D = P (1 − HHI(c)),
where P is the contestable surplus and HHI(c) is the Herfindahl–Hirschman Index of
the contest strengths {ci}i∈L. Because ã, L, and {ci} depend only on the inefficiencies of
active players, a marginal change in the inefficiency aj of an inactive player has no effect
on these quantities. Hence HHI(c) remains constant, and

∂D
∂aj

= 0.

(ii) Active players (j ∈ L). For an active player, the effect of a change in aj follows
from D = P (1 − HHI(c)), so that ∂D

∂aj
= −P ∂(HHI)

∂aj
. The HHI is defined as

HHI(c) =
∑

i∈L c2
i

(∑k∈L ck)2 =
∑

i∈L c2
i

C2 .
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Differentiating using the quotient rule gives

∂(HHI)
∂aj

=

(
∂(∑ c2

i )/∂aj

)
C2 − (∑ c2

i )
(
∂C2/∂aj

)
C4 .

Step 1: Derivative of the numerator.

∂

∂aj

(∑
i∈L

c2
i

)
= 2cj

∂cj

∂aj

+
∑

i∈L,i ̸=j

2ci
∂ci

∂aj

.

From Proposition 2,

∂cj

∂aj

= −L − 2
L − 1 ,

∂ci

∂aj

= 1
L − 1 (i ̸= j).

Substituting gives

∂(∑ c2
i )

∂aj

= 2
L − 1

−(L − 2)cj +
∑
i ̸=j

ci

 = 2
L − 1(C − (L − 1)cj) .

Step 2: Derivative of the denominator.

∂C2

∂aj

= 2C ∂C
∂aj

= 2C
L − 1 ,

since ∂C
∂aj

= 1
L−1 (Proposition 2).

Step 3: Substituting these results into the quotient rule yields

∂(HHI)
∂aj

= 1
C4

[
2

L−1(C − (L − 1)cj)C2 − (
∑

c2
i ) 2C

L−1

]

= 2
(L − 1)C3

[
C2 − (L − 1)cjC − C2 HHI

]
.

Simplifying,
∂(HHI)

∂aj

= 2
(L − 1)C

[
(1 − HHI) − (L − 1)cj

C

]
.

Let δ := 1 − HHI denote the dissipation factor. Then

∂(HHI)
∂aj

= 2
(L − 1)C

[
δ − (L − 1)cj

C

]
.

Step 4: Effect on dissipation. Since D = P (1 − HHI),

∂D
∂aj

= −P
∂(HHI)

∂aj

= 2P

(L − 1)C

[
(L − 1)cj

C
− δ

]
.
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Because P , L, and C are positive, the sign of ∂D
∂aj

depends only on the term in brackets.
Hence,

∂D
∂aj

≥ 0 ⇐⇒ cj

C
≥ δ

L − 1 .

Proof of Proposition 6 (Effect of entry on aggregate dissipation). Let L denote the initial
set of L active players with contest strengths {ci}i∈L, and define

C :=
∑
i∈L

ci, S2 :=
∑
i∈L

c2
i .

I seek the condition on the efficiency gain ε > 0 such that aggregate dissipation decreases
following the entry of a new player.

After entry, the new participant has contest strength cL+1 = (L−1)ε
L

, while each
incumbent’s strength falls to c′

i = ci − ε
L

. Aggregate dissipation decreases if and only if
the new Herfindahl–Hirschman Index (HHI) increases, i.e.

(
(L−1)ε

L

)2
+∑

i∈L

(
ci − ε

L

)2

(
(L−1)ε

L
+∑

i∈L

(
ci − ε

L

))2 >
S2

C2 . (4.1)

Expanding the numerator and denominator of the left-hand side gives

Num = (L2 − L + 1)ε2

L2 − 2Cε

L
+ S2, Den =

(
C − ε

L

)2
.

Since denominators are positive, cross-multiplication preserves the inequality in (4.1),
leading to (

C2(L2 − L + 1) − S2

L2

)
ε2 +

(
2CS2 − 2C3

L

)
ε > 0.

Factoring out ε gives

ε

(C2(L2 − L + 1) − S2

L2

)
ε −

(2C

L

)
(C2 − S2)

 > 0.

Because C2(L2 − L + 1) − S2 > 0 (as S2 ≤ C2 and L2 − L + 1 ≥ 1), the quadratic opens
upward. For ε > 0, the inequality holds whenever

ε >
2CL(C2 − S2)

C2(L2 − L + 1) − S2
.
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Using S2 = C2 HHI(0) and δ(0) := 1 − HHI(0), I can rewrite the condition as

ε >
2CL C2δ(0)

C2
(
L2 − L + 1 − HHI(0)

) = 2CL δ(0)
L2 − L + δ(0) = 2C δ(0)

L − 1 + δ(0)
L

.

This gives the minimum efficiency gain required for entry to reduce aggregate dissipation.
Define

A(L) := 2
L−1

L
+ δ

L2

= 2
1 − 1

L
+ δ

L2

.

Differentiating A(L) = 2
1 − 1

L
+ δ

L2

with respect to L holding the pre-entry dissipation

factor δ fixed (i.e., a partial derivative) yields

∂A

∂L
= −2

d
dL

(
1 − 1

L
+ δ

L2

)
(
1 − 1

L
+ δ

L2

)2 = − 2(L − 2δ)
L3
(
1 − 1

L
+ δ

L2

)2 .

Since L > 2 and 0 < δ < 1, the numerator is positive, so ∂A
∂L

< 0. Hence, keeping the
baseline concentration δ constant, the threshold ε required for entry to reduce aggregate
dissipation decreases as the incumbent set grows.

Proof of Proposition 7 (Uniform efficiency gains reduce aggregate dissipation). Consider a
uniform efficiency gain of magnitude ε > 0, which reduces each active player’s inefficiency
from ai to a′

i = ai − ε. Since the active set L remains fixed for small ε, the post-reform
contest strengths are

c′
i = ã′ − a′

i =
(

ã − Lε

L − 1

)
− (ai − ε) = ci − ε

L − 1 ,

and the total contest strength becomes

C ′ =
∑
i∈L

c′
i = C − Lε

L − 1 .

Aggregate dissipation is given by D = P (1 − HHI), where HHI denotes the Herfind-
ahl–Hirschman Index of relative contest strengths:

HHI =
∑

i∈L c2
i

C2 .

Differentiating with respect to ε and evaluating at ε = 0 gives

d(HHI)
dε

∣∣∣∣
ε=0

= 2
C(L − 1) (L HHIL − 1) .

This follows from substituting ∂c′
i

∂ε
= − 1

L−1 and ∂C′

∂ε
= − L

L−1 into the derivative of HHI =
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c2
i

C2 and simplifying.
By the Cauchy–Schwarz inequality, HHIL ≥ 1

L
, with equality only if all contest

strengths are identical. Thus,

L · HHIL − 1 ≥ 0 =⇒ d(HHI)
dε

≥ 0.

A uniform efficiency gain therefore increases (or leaves unchanged) the concentration of
contest strengths: the distribution of effective contest power becomes more unequal.

Since aggregate dissipation moves inversely with the HHI,

dD
dε

= −P
d(HHI)

dε
= − 2P

C(L − 1)
(
L HHIL − 1

)
≤ 0.

Hence, uniform efficiency gains can never increase aggregate dissipation. The inequality
is strict whenever contest strengths are heterogeneous (HHIL > 1/L), and becomes an
equality only under perfect symmetry. Notice that such an improvements (holding the
active set fixed) reduce the relative dispersion of cost parameters ai but—through the
induced movement of the cutoff ã—make the distribution of contest strengths ci := ã − ai

more unequal, raising concentration (HHI) and thereby lowering aggregate dissipation
δ = 1 − HHI(c).22

Appendix A. Local Approximation of the Participation
Cutoff

Consider the contest success function

πi = f(ei)
F

, F =
∑
k∈L

f(ek),

where f ′ > 0 and f ′′ ≤ 0, and let the cost function h satisfy h′ > 0 and h′′ ≥ 0. Each
active player i ∈ L satisfies the first-order condition

P f ′(ei)
F

(
1 − πi

)
= ai h′(ei), (.2)

22To avoid confusion, the concentration index is computed over strengths {ci}i∈L, not costs {ai}. A
uniform efficiency shift can compress the dispersion of ai while ã co-moves so that each incumbent’s
ci falls by the same absolute amount; this equal subtraction increases the concentration of {ci} (and
thus lowers δ). In the symmetric benchmark (HHIL = 1/L), strengths remain equal after the common
subtraction, so HHI—and therefore δ—are unchanged.
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which equates marginal expected gain to marginal cost. Summing (.2) over i ∈ L yields

P
∑
i∈L

f ′(ei)
F

(
1 − πi

)
=
∑
i∈L

ai h′(ei). (.3)

Let e∗(ã) denote the (locally) unique equilibrium effort vector in the active set L and
define

Ξ(ã) :=
∑
i∈L

f ′(e∗
i )

F ∗

(
1 − π∗

i

)
, S∗ :=

∑
i∈L

e∗
i , F ∗ :=

∑
i∈L

f(e∗
i ).

Then (.3) can be written as

H(ã) := P Ξ(ã) −
∑
i∈L

ai h′(e∗
i ) = 0. (.4)

Let us fix a reference equilibrium (ã0, e∗
0) and define

S0 := S∗(ã0), F0 := F ∗(ã0), Ξ0 := Ξ(ã0).

A first-order expansion of H(ã) around ã0 gives

0 ≈ H(ã0) + P
[
Ξ(e∗) − Ξ(e∗

0)
]

−
∑
i∈L

(ai − ai,0) h′
i −

∑
i∈L

ai,0
(
h′(e∗

i ) − h′
i

)
, (.5)

where h′
i := h′(e∗

i,0) and H(ã0) = 0 at the reference point. Define the local constant

C0 := S0 Ξ0 =
∑
i∈L

S0
f ′(e∗

i,0)
F0

(
1 − π∗

i,0

)
, (.6)

which is the contest’s total marginal reward capacity at the reference point.

From multi-dimensional to one-dimensional: Ξ as a function of S∗. Let ∆e :=
e∗ − e∗

0. Project ∆e onto the gradient of Ξ at e∗
0:

α := ∇Ξ(e∗
0)⊤∆e

∇Ξ(e∗
0)⊤e∗

0
, ζ := ∆e − α e∗

0.

By construction, ∇Ξ(e∗
0)⊤ζ = 0. A first-order Taylor expansion yields

Ξ(e∗) − Ξ(e∗
0) = ∇Ξ(e∗

0)⊤∆e + O(∥∆e∥2) = α ∇Ξ(e∗
0)⊤e∗

0 + O(∥∆e∥2).

Since S∗ − S0 = 1⊤∆e = α 1⊤e∗
0 + 1⊤ζ and 1⊤ζ = O(∥ζ∥), I can write, to first order,

Ξ(e∗) − Ξ(e∗
0) = − C0

S2
0

(
S∗ − S0

)
+ O

(
∥∆e∥2

)
,
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which implies the local inverse-in-S∗ representation

Ξ(ã) = C0

S∗(ã) + RΞ(ã), RΞ(ã0) = 0, |RΞ(ã)| ≤ KΞ

∣∣∣∣S∗(ã) − S0

S0

∣∣∣∣2. (.7)

Intuition. The argument above formalizes the idea that near an equilibrium profile e∗
0,

the marginal-benefit term Ξ(e) behaves essentially as a one-dimensional function of the
aggregate effort S∗ = ∑

i e∗
i . The projection α isolates the component of the adjustment

∆e = e∗ −e∗
0 that is aligned with the direction of proportional scaling of all efforts, e∗

0, while
ζ captures purely redistributive deviations that leave the weighted average ∇Ξ(e∗

0)⊤e∗
0

unchanged to first order. Since Ξ depends on e only through relative effort proportions,
perturbations orthogonal to e∗

0 (i.e., changes in composition holding total effort fixed)
affect Ξ only at second order. Hence, the leading-order change in Ξ comes solely from
the aggregate expansion or contraction of total effort S∗. The Taylor expansion then
implies that Ξ(e) is locally proportional to 1/S∗ (with curvature term RΞ(ã) capturing
higher-order deviations.) Economically, this reduction means that when aggregate effort
rises, each player’s marginal influence on the contest probability Ξ declines inversely with
S∗, reflecting diminishing aggregate returns to total effort intensity.23

Lemma 2 (Cost–Prize First-Order Cancellation). Fix L and a reference equilibrium
(ã0, e∗

0) with H(ã0) = 0. Let ∆e := e∗ − e∗
0. Then

∑
i∈L

ai,0
[
h′(e∗

i ) − h′
i

]
= − P

[
Ξ(e∗) − Ξ(e∗

0)
]

+ O
(
∥∆e∥2

)
. (.8)

Substituting Lemma 2 into (.5),

0 ≈ P
[
Ξ(e∗) − Ξ(e∗

0)
]

−
∑

i

(ai − ai,0)h′
i −

∑
i

ai,0
[
h′(e∗

i ) − h′
i

]
,

and using (.8) gives the symmetrized first-order balance

0 ≈ 2 P
[
Ξ(e∗) − Ξ(e∗

0)
]

−
∑
i∈L

(ai − ai,0)h′
i + O(∥∆e∥2). (.9)

Using (.7),

Ξ(e∗) − Ξ(e∗
0) ≈ C0

(
1

S∗(ã) − 1
S0

)
,

so (.9) becomes

0 ≈ 2 P C0

( 1
S∗(ã) − 1

S0

)
−
∑
i∈L

(ai − ai,0) h′
i + O(∆2), ∆ :=

∣∣∣∣S∗(ã) − S0

S0

∣∣∣∣. (.10)

23In the linear–lottery case (f(e) = e), the gradient ∇Ξ(e∗
0) is parallel to e∗

0, so any change in efforts
decomposes neatly into a common scaling (changing total effort) and a reshuffle (redistributing effort).
Only the scaling component affects Ξ to first order.
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Uniform efficiency perturbation and the cost-weighted index. Under a uniform
gain with dai/dε = −1 for all i, define the cost-weighted mean

āh := 1∑
i∈L h′

i

∑
i∈L

ai h′
i, (.11)

so ∑i∈L(ai − ai,0)h′
i = (āh − āh,0)∑i∈L h′

i, with h′
i := h′(e∗

i,0) frozen at baseline. Absorbing∑
i∈L h′

i into the normalization, (.10) yields the local cost–prize balance

H1(āh, ε) ≡ 2 P C0

S∗(ε) − āh = O(∆2). (.12)

Let denote C̃0 := 2C0. Then

H1(āh, ε) ≡ P C̃0

S∗(ε) − āh = O(∆2), (.13)

where, in the partial derivative ∂H1/∂āh, I hold S∗ fixed as S∗(ε). To first order,

āh ≈ P C̃0

S∗
(
L(ã)

) . (.14)

Differentiating H1(āh(ε), ε) = 0 with respect to ε (active set fixed) gives

− P C̃0(
S∗(ε)

)2
dS∗

dε
− dāh

dε
= O(∆2),

hence
dāh

dε
≈ − P C̃0(

S∗(ε)
)2

dS∗

dε
. (.15)

Cutoff response via the boundary KKT. The participation cutoff ã is also pinned
down by the marginal-indifference (boundary KKT) condition (2.14). Linearizing the
boundary condition and using the same inverse-in-S∗ behavior for the prize term gives

dã

dε
≈ − ã

S∗(ε)
dS∗

dε
. (.16)

Finally, substituting (.16) into (.15) gives

dāh

dε
≈ − P C̃0(

S∗(ε)
)2

(
− S∗(ε)

ã

dã

dε

)
= P C̃0

S∗(ε) ã

dã

dε
. (.17)
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Using C̃0 = 2C0 and the boundary KKT ã = P C0

S∗(ε) , Equation (.17) simplifies to

dāh

dε
≈ 2 dã

dε
=⇒

∣∣∣∣dã

dε

∣∣∣∣ = 1
2

∣∣∣∣dāh

dε

∣∣∣∣, (.18)

Finally, differentiating the definition of the equilibrium cutoff

āh =
∑

i∈L(ã) ai h′(e∗
i )∑

i∈L(ã) h′(e∗
i )

,

with respect to the reform parameter ε, while holding the active set L(ã) fixed, gives

dāh

dε
=

(∑
i∈L(ã) ai h′′(e∗

i )
de∗

i

dε

) (∑
i∈L(ã) h′(e∗

i )
)

−
(∑

i∈L(ã) ai h′(e∗
i )
) (∑

i∈L(ã) h′′(e∗
i )

de∗
i

dε

)
(∑

i∈L(ã) h′(e∗
i )
)2 .

Using the definition of āh =
∑

i
aih

′(e∗
i )∑

i
h′(e∗

i ) , I can rewrite the numerator as

∑
i∈L(ã)

h′′(e∗
i )

de∗
i

dε

[
ai

∑
j∈L(ã)

h′(e∗
j)−

∑
j∈L(ã)

aj h′(e∗
j)
]

=
 ∑

j∈L(ã)
h′(e∗

j)
 ∑

i∈L(ã)
h′′(e∗

i ) (ai−āh) de∗
i

dε
.

Substituting this back into the derivative expression and simplifying yields

dāh

dε
=
∑

i∈L(ã) h′′(e∗
i ) (ai − āh) de∗

i

dε∑
i∈L(ã) h′(e∗

i )
.

Since the denominator ∑i∈L(ã) h′(e∗
i ) > 0 acts only as a positive scaling term, I obtain, up

to proportionality,
dāh

dε
∝

∑
i∈L(ã)

(ai − āh) h′′(e∗
i )

de∗
i

dε
. (.19)
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