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Abstract

We develop a model to study coalitions that extract the resources of outsiders.

The players in our model are endowed with power and resources. The ruling coali-

tion plunders outsiders, distributes the plundered resources among its members,

and guarantees that insiders’ resources remain safe. Under natural conditions, we

show that a unique ruling coalition exists using both axiomatic and non-cooperative

approaches. Our analysis focuses on the resilience of the ruling coalition to shocks

affecting the power and resources of both insiders and outsiders, as well as the inten-

sity of plundering. We show that a coalition with a classical hierarchical structure—

where power and resources are equal within each “rank” but strictly higher in higher

ranks—exhibits greater resilience to external shocks affecting outsiders’ power and

resources. The only exception arises when plundering intensity is relatively weak, in

which case the internal distribution of power and resources does not affect external

resilience. Our final results provide insights into how the intensity of plundering

impacts the internal and external resilience of ruling coalitions across political en-

vironments.

Keywords: Political Economy, Coalition Formation, Institutions, Resilience, Plunder-
ing.

1 Introduction

Coalition formation is always challenging (Ray and Vohra (2015a)), and a “plundering
coalition” is no exception. For such a coalition, the wealth they can distribute among
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coalition members is plundered from the outsiders. This setup applies to a wide range of
important social phenomena, such as an army that plunders the civil society, or an oli-
garchical government that taxes its citizens (Puga and Trefler (2014); Xu (2018); Sánchez
De La Sierra (2020); Henn et al. (2024)). We formally study the problem to form a coali-
tion whose primary objective is to plunder outsiders. To our knowledge, this is the first
ever such attempt in coalition formation games. Our model yields a series of novel results.
Among others, we study the resilience of a plundering coalition against outsiders, which
justifies the key organizational principle of hierarchy for an effective army or a stable
oligarchy. By doing so, we also propose a novel methodology to analyze the resilience of
an equilibrium coalition against exogenous shocks.

Our model features a society of a finite number of individuals. Each individual has
two endowments, power and wealth. The power of a coalition is the summation of all
its members’ powers. A “winning coalition” can defeat the outsiders with its power.1

The game starts with an initial winning coalition. A member of the initial coalition may
propose to create a new coalition. If all members of the proposed coalition approve and
this is a winning coalition, the new coalition is formed and becomes the ruling coalition.
Otherwise, another member can make a proposal, and the game continues until either all
members of the initial coalition have proposed or a new coalition is formed. If no new
coalition is formed and nobody remains from the initial winning coalition to propose,
the initial winning coalition becomes the ruling coalition. The emerging ruling coalition
will then defeat the outsiders, plunder their wealth, and distribute the plundered wealth
among the members of the ruling coalition.

We are primarily interested in the properties of the ruling coalition. The ruling
coalition is shaped by the following trade-off. By bringing a new member to the coalition,
the new coalition is more powerful against outsiders, therefore being able to plunder
more wealth from the defeated outsiders. But a new member is also costly for existing
insiders because they cannot plunder the wealth of the new member anymore. We show
that a ruling coalition that optimally balances the trade-off exists and is unique, and it
corresponds to an axiomatic characterization of the coalition formation game. The ruling
coalition has

To prepare our novel analysis of resilience, we prove a necessary and sufficient con-
dition for the ruling coalition in equilibrium. First, the coalition must be better at
plundering than any of its sub-coalitions. This motivates us to define a concept of “in-
ternal resilience:” a ruling coalition is more “internally resilient” if it is more likely to
survive an exogenous perturbation to the power and resources of its own members. Sec-

1More rigorously, a coalition is a winning coalition if its power is higher than the β fraction of the
total power of society, with β > 1/2.
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ond, the coalition must be better at plundering than any possible alliances between one
of its sub-coalitions and any subset of outsiders. This motivates us to define of a concept
of “external resilience.” Holding the power and resources of its own members constant, a
ruling coalition is more “externally resilient” if it is more likely to survive an exogenous
perturbation to the power and resources of outsiders. We then focus on the external
resilience because it is more challenging to conceptualize and characterize than internal
resilience.

To understand the socioeconomic condition of high external resilience, we conduct a
thought experiment to make any two coalition members more “homogenous.” Specifically,
consider an exogenous transfer of power from a stronger member to a weaker member,
without flipping their power rank, or a transfer of wealth from a richer member to a
poorer member, without flipping their resource rank, or both. This transfer holds the
characteristics of the ruling coalition constant, so it is still the unique ruling coalition.
But importantly, such a transfer reduces the risk of the more threatening member with
stronger power or lower wealth. After the transfer, the ruling coalition becomes more
resilient to an alliance between a sub-coalition that includes the more threatening member
and any subset of outsiders, where the outsiders are subject to any possible perturbation
of their resources and power. At the same time, the ruling coalition is equally resilient
to an alliance between a sub-coalition that includes the less threatening member and any
subset of outsiders. Therefore, the ruling coalition becomes more externally resilient if
two of its members become more homogenous.

It is important to note that the analysis does not imply that a ruling coalition is the
most externally resilient if its members are absolute equal. Instead, the analysis implies
that more externally resilient than others is a ruling coalition of a classic hierarchical
structure. Such a hierarchical coalition consists of well-defined “ranks.” Within each
“rank,” all members are absolutely equal with each other; but higher “ranked” members
are both richer and more powerful than lower ranked members. Once such a hierarchy
emerges, it is not possible to further improve external resilience through an operation of
transfer as above. Our analysis therefore offers a justification for the classical hierarchical
structure of many organizations, such as armies and bureaucracy, by their unique capacity
in bearing changes to its enemies/subjects. This justification is, as far as we know, novel,
in contrast to the conventional emphasis on the advantage of a hierarchical structure in
incentive-alignment (Qian (1994); Mookherjee (2013)) or division of labor in (Garicano
(2000); Garicano and Rossi-Hansberg (2015)).

Finally, we jointly investigate how internal and external resilience respond to a change
in the environment, i.e., a change in the plundering “technology.” Consider that, holding
the power and wealth of the ruling coalition and society constant, the ruling coalition
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becomes more capable of extracting wealth from society. This exogenous change raises
the cost of keeping a player within the ruling coalition, because the insiders’ resources
remain safe and are not subject to plundering. As a result, the preference of the mem-
bers of the ruling coalition for “exclusive” alternatives—less powerful and poorer than
the ruling coalition—increases, while their inclination for “inclusive” alternatives—more
powerful and richer than the ruling coalition—decreases. The internal threats to the rul-
ing coalition are its sub-coalitions which are exclusive alternatives. Therefore, a stronger
plundering process decreases the internal resilience.2 This contrasts with the naive view
that plundering more intensively increases the insiders’ attachment to the ruling coalition.

For the external resilience of the ruling coalition, a stronger plundering technology is
a double-edged sword. On one hand, exclusive alternatives which involve small segments
of society become more threatening to the ruling coalition. On the other hand, inclusive
alternatives which encompass broader segments of society become less threatening. Thus,
the realization of these alternatives—the specification of shocks—becomes particularly
important. If the exclusive alternatives are more likely to emerge, a stronger plundering
technology decreases external resilience. Instead, if inclusive alternatives are more likely
to appear, a stronger plundering process increases the external resilience. The latter
suggests that a ruling coalition that engages in power-light plundering of society benefit
more from facing a more powerful and wealthier opposition than a weaker and poorer
one.

Lastly, although the direction of change in external resilience generally depends on
the realization of powers and resources inside the ruling coalition, we identify a wide
range of political environments where this is not the case. That is, the external resilience
is robust with respect to changes in internal configuration of powers and resources. In
these political environments, the plundering process is “power-intensive;” for instance,
it is endowed with better protections of property rights. Precisely, in these contexts,
corresponding to any exclusive alternative, there always exists an inclusive alternative
that is more threatening to the ruling coalition. This implies that the only factor affect-
ing external resilience is the players’ preference for inclusive alternatives. As a result,
a stronger plundering technology always increases the external resilience of the ruling
coalition, since it renders the inclusive alternatives less beneficial for the players. Thus,
in power-intensive plundering environments, there exists a trade-off between external and
internal resilience of the ruling coalition with respect to the plundering intensity, regard-
less of the specifications of internal and external shocks. This offers a novel insight: even
imperfect property rights—which do not fully prevent plundering by insiders—could po-
tentially hinder the ruling coalition from achieving both internal and external stability

2This generally holds regardless of the specifics of the perturbations.
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when plundering technology changes. This contrasts with “power-light plundering” envi-
ronments, wherein a change in plundering technology could alleviate both internal and
external threats to the ruling coalition.

1.1 Relevant Literature

Our paper is relevant to a few strands of literature. The literature on coalition formation
largely focus on characterizing the equilibrium coalition (Acemoglu et al. (2008); Ray and
Vohra (2015b); Battaglini (2021)), or define stability mainly by incorporating the notion
of “farsightedness” (Harsanyi (1974); Ray and Vohra (2015c)). We instead take one step
further by analyzing the resilience of the equilibrium coalition against exogenous shocks.
By doing so, we make a methodological contribution by proposing a simple framework
to analyze the resilience of the equilibrium coalition. This novel focus on resilience also
uncovers a lot of new substantive insights.

We bring together the two strands of literature on coalition formation and organi-
zational economics of hierarchy. Existing literature usually focus on how a hierarchy
may improve incentive-alignment or division of labor (Qian (1994); Qian et al. (2006);
Mookherjee (2013); Garicano (2000); Garicano and Rossi-Hansberg (2015)). We offer a
new justification for hierarchy: we show that a hierarchy is uniquely resistant to arbitrary
exogenous changes to the characteristics of individuals outside the hierarchy. Our novel
justification is relevant to many hierarchies where the characteristics of outsiders are a
first order concern, such as armies and fiscal bureaucracies (Besley and Persson (2009);
Xu (2018); Sánchez De La Sierra (2020); Henn et al. (2024)).

Our model also makes novel contributions to a few central debates in political economy.
First, political economists have uncovered that the interaction between power and wealth
is a fundamental thread in political economy (Acemoglu and Robinson (2008); Dal Bó
and Dal Bó (2011); Dal Bó et al. (2022); Acemoglu and Robinson (2013)). We contribute
to this literature by an in-depth analysis of the power-wealth trade-off through the lens
of coalition formation, the first ever attempt to our knowledge. It is through the coalition
analysis that we uncover the innovative insight on the unique resilience of a hierarchical
organization.

Our analysis also contributes to the burgeoning literature on political economy of non-
democracies (Egorov and Sonin (2024)). Specifically, our analysis of internal and external
resilience engages with the literature that addresses the trade-offs that authoritarian
states resolve while dealing with internal or external threats to their rule. A strand of
literature studies the loyalty-competence trade-off, i.e., how autocratic states balance the
competence of their officials against their loyalty to prevent internal dissent (Besley and
Kudamatsu (2007); Egorov and Sonin (2011); Jia et al. (2015); Zakharov (2016); Bai and
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Zhou (2019); Mattingly (2024)). Another strand of literature focuses on external problems
such as mass protests, or propaganda (Wintrobe (1990); Wintrobe (2000); Konrad and
Skaperdas (2007) Egorov et al. (2009); De Mesquita (2010); Yanagizawa-Drott (2014);
Shadmehr (2018)). There are many trade-offs the dictators resolve while tackling external
threats, for instance, the one between “informational openness” and “security” (Lorentzen
(2013); Gehlbach and Sonin (2014); Lorentzen (2014); Guriev and Treisman (2019);
Enikolopov et al. (2020)). Through the novel lens of coalition formation, we contribute to
this literature by showing how the internal and external threats are related. In particular,
we identify the condition for a trade-off between internal and external resilience driven by
the process of coalition formation. Additionally, we provide insights into when this trade-
off does not hold, and the characteristics of oppositions that can benefit an autocratic
state engaging in intensive plundering.

The remainder of the paper is organized as follows. Section 2 introduces the model.
Section 3 presents the preliminary analysis of the coalition formation game. Building on
Section 3, we proceed by studying the resilience in Section 4. Section 5 concludes.

2 Environment

There is a set of players N = {1, 2, . . . , n}. We denote the set of all subsets of N by 2N .
Time is finite and indexed by t ∈ {1, 2, . . . , T}. The players are endowed with a pair of
power p and resources x, specified by the mappings

p(·) : N → R++,

x(·) : N → R++.

We refer to pi := p(i) and xi := x(i) as the political power and resources of individual
i ∈ N . A non-empty set I ⊆ N is called a coalition. Any player can be a member of only
one coalition at any stage of the game. The power and resources of any coalition I ⊆ N

are denoted by
PI =

∑
i∈I

pi and XI =
∑
i∈I

xi.

Let PN :=
∑

i∈N pi and XN :=
∑

i∈N xi. The coalition I is called a winning coalition if
PI ≥ βPN , where β ∈ (1/2, 1] is a fixed supermajority requirement. Denote the set of
all winning coalitions by W . There is a baseline payoff function U : N × W → R that
assigns to any player i ∈ N the payoff Ui(I) when the winning coalition I ∈ W becomes
the ruling coalition. We also write U(i, I) := Ui(I).

A ruling coalition of our model is necessarily a winning coalition. As the key novelty
of our setup, a ruling coalition can only plunder outsiders, while the resources of its
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members are safe. This creates a central trade-off for our model. A new member who is
brought into the ruling coalition strengthens its capability to plunder outsiders, but the
ruling coalition loses the opportunity to plunder this new member. This key trade-off is
formally captured by Assumption 1.

Assumption 1. [Payoffs] For any i ∈ N and I ∈ W, Ui(I) := xi + wi(I), where wi(·)
satisfies the following properties:

1. (Trade-off) If I ∈ W \ {N} and i ∈ I, we have wi(I) = Gi(PI , XI) > 0, where
Gi(·, ·) : [βPN , PN)× [0, XN) → R++ is a function continuous in PI and XI , satis-
fying the following conditions.

(a) For all I and I ′ ∈ W\{N} with PI = PI′, if i ∈ I and i ∈ I ′, then Gi(PI , XI) >

Gi(PI′ , XI′) if and only if XI < XI′.

(b) For all I and I ′ ∈ W \ {N} with XI = XI′, if i ∈ I and i ∈ I ′, then
Gi(PI , XI) > Gi(PI′ , XI′) if and only if PI > PI′.

2. If I ∈ W \ {N} and i /∈ I, then wi(I) < 0.

3. For all i ∈ N , wi(N) = 0.

Assumption 1 establishes some of the key primitives of the model. In Part 1, the
function Gi(·, ·) ranks the plundered resources of any individual across non-trivial ruling
coalitions of which she is a member.3 Part 1(a) says that between ruling coalitions
with equal power, players prefer the one with fewer internal resources, which permits
more external resources for plundering. Meanwhile, between ruling coalitions with equal
resources, players prefer the one with larger power (Part 1(b)), as it strengthens the
ruling coalition in extracting resources. Both Part 1(a) and Part 1(b) imply that when
the ruling coalition is not the grand coalition N , insiders obtain strictly positive payoffs
from plundering outsiders. Together with Part 2, this implies that inclusion in the ruling
coalition strictly benefits insiders relative to their initial resources, while exclusion strictly
harms outsiders relative to their initial resources. Part 3 states that the players’ payoff
from the plundered resources is zero when the ruling coalition is N , since there are no
outsiders to plunder.

Under Assumption 1, a ruling coalition is fully characterized by its power and re-
sources. This keeps the model tractable by eliminating the complexities that arise when
the specific combination of players inside the ruling coalition also matters. For the rest

3For example, one can view Gi(PI , XI) as a combination of a plundering component F (I) : W → R++

and a share component Π(i, I) : N ×W → [0, 1], i.e., Gi(PI , XI) := Π(i, I)F (I) is the share allocated to
individual i within the coalition I from plundered resources F (I).
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of this paper, we thus write Gi(PI , XI) for player i’s plunder gains in coalition I. As-
sumption 1 immediately yields the following lemma.

Lemma 1. Under Assumption 1, any player i ∈ N has strictly increasing and continuous
indifference curves over (P,X). The variables P and X are the aggregate power and
resources of ruling coalitions that include the player i; (P,X) ∈ [βPN , PN)× [0, XN).

Lemma 1 does not imply that indifference curves are identical across individuals. The
following assumption imposes common preferences for players, which simplifies notation
throughout the paper. We later show that the main results continue to hold under a
considerably weaker assumption.

Assumption 2. For all I ∈ W and all i ∈ I, Gi(I) := g(i)G(I), where g(i) > 0.

Under Assumption 2, there are two components in a player’s preference over ruling
coalitions that include the player: an idiosyncratic component g(i) and a common compo-
nentG(I), which depends on the aggregate powers and resources of the coalition, (PI , XI).
This assumption implies that for all players, the indifference curves over the coalitions
containing them are the same and determined by the function G(·) (Figure 1). In other
words, for any ruling coalitions I, I ′ ∈ W and any i, j ∈ I ∩ I ′, we have Ui(I) ≥ Ui(I

′) if
and only if Uj(I) ≥ Uj(I

′), i.e., the preferences of players over any pair of ruling coalitions
including them are identical.

Remark 1. Appendix B provides a simple microfoundation for Assumption 2. In particu-
lar, Assumption 2 holds if insiders’ payoffs decompose as wi(I) = Πi(I)F (I), where Πi(I)

is an intra-coalition share (e.g., proportional to pi/PI) and F (I) is the coalition’s total
extractable surplus, depending only on aggregate characteristics such as (PI , XN − XI).
This structure induces a common ordering over the deviation coalitions relevant for the
resilience constraints.

Furthermore, Assumption 2 is not required for the main results and is imposed mainly
to simplify notation. All results can be derived under a weaker condition that requires
preference “consistency” only on a restricted domain, i.e., the set of “potential ruling
coalitions” Z in Definition 3.1.4 This milder assumption is also natural for our focus on
resilience. Since we study whether a ruling coalition survives a shock affecting outsiders,
it is reasonable to require that its members (weakly) prefer to be in that coalition before
the shock; otherwise, external resilience is trivially zero.

4More precisely, the proofs only invoke preference comparisons among coalitions in Z and among the
sub-coalitions and deviation coalitions generated by Z that enter the resilience constraints.
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Figure 1: Identical indifference curves under Assumption 2

Definition 1. Fix a function G(·) that satisfies Assumption 1. For any ruling coalition
I, denote the indifference curve through I by X := HI(P ), which is implicitly defined by
G(P,X) = G(PI , XI).

Throughout the paper, we assume that the joint power and resources mapping is
generic in the sense that for all I, I ′ ∈ W , we have PI ̸= PI′ or XI ̸= XI′ .5 The following
assumption helps establish the uniqueness results in the subsequent section.

Assumption 3. Fix the power and resource mappings. Then, for all I, I ′ ∈ W, we have
G(I) ̸= G(I ′).6

This assumption implies that players receive strictly different payoffs from different
ruling coalitions involving them.

3 Preliminary Analysis of the Coalition Formation Game

This section establishes existence and uniqueness of the coalitional equilibrium, which
prepares our analysis of its “resilience,” i.e., how the equilibrium responds to exogenous
shocks to players’ power or resources.

5Mathematically, this assumption is without much loss of generality, since the set of vectors
{(PI , XI)} ∈ R2|N|+1

++ that are not generic is the union of finitely many hyperplanes and therefore has
Lebesgue measure zero.

6This assumption is also made without much loss of generality, as the set of functions from R2 to R
for which the outputs coincide on a finite set of distinct inputs forms a measure-zero set in the space of
all functions from R2 to R.
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3.1 Axiomatic analysis

We begin with an axiomatic analysis. As in Acemoglu et al. (2008) and Acemoglu et al.
(2012), it shows that our results are independent of the details of the agenda-setting and
voting protocols in the non-cooperative game introduced in Section 3.2. The axiomatic
analysis will also help characterize the equilibrium of the non-cooperative game in Section
3.2.

We define a correspondence ϕ : W ⇒ 2N , which identifies the set of ruling coalitions
corresponding to each initial winning coalition. We assume that ϕ satisfies the following
axioms:

Axiom 1 (Non-triviality). For any I ∈ W, ∅ /∈ ϕ(I) and N /∈ ϕ(I).

Axiom 2 (Super-majority of Power). For any I ∈ W and any I ′ ∈ ϕ(I), we have I ′ ∈ W.

Axiom 3 (Rationality). For any I ∈ W, any I ′ ∈ ϕ(I), and any I ′′ ∈ W,

I ′′ /∈ ϕ(I) ⇐⇒ G(I ′′) < G(I ′).

These axioms are natural and capture the economic forces that give rise to the pure-
strategy SPE of the game in Section 3.2. Axiom 1 requires ϕ to map any initial winning
coalition to a non-trivial ruling coalition. Axiom 2 requires any ruling coalition selected
by ϕ to be a winning coalition. Axiom 3 imposes payoff-based selection: if I ′ ∈ ϕ(I),
then no winning coalition I ′′ with strictly lower G(·) can be selected, and conversely any
winning coalition with strictly higher G(·) must be selected. Proposition 1 establishes
that these axioms pin down a unique mapping under Assumptions 1–2, and that the
correspondence is single-valued under Assumptions 1–3.

Proposition 1. 1. (Existence) Under Assumptions 1–2, the unique correspondence
that satisfies Axioms 1–3 is

ϕ(I) = arg max
W∈W

G(W ).

2. (Uniqueness) Under Assumptions 1–3, the correspondence ϕ is single-valued.

Proposition 1 is straightforward. It shows that the ruling coalition is a winning coali-
tion that maximizes plunder, i.e., it maximizes G(W ) among all W ∈ W . Under As-
sumption 3, this coalition is unique.
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3.2 The non-cooperative extensive game

We next define the extensive-form complete-information game

Γ =
(
N, I0, p(·), x(·), {Ui(·)}i∈N , β

)
,

where N is the set of players, I0 is the initial winning coalition, p(·) and x(·) are the
power and resource mappings, {Ui(·)}i∈N are the payoff functions satisfying Assumption
1 and Assumption 2, and β ∈ (1/2, 1] is the supermajority requirement. The game starts
with the initial winning coalition I0 ∈ W , and the steps are as follows:

1. Nature randomly picks an agenda setter aq from the initial winning coalition, with
q = 1, where q ∈ {1, . . . , |I0|} denotes the round of agenda setting and voting.

2. The agenda setter aq proposes a coalition Iq ⊆ N . If PIq < βPN , then the game
proceeds to Step 4. Otherwise, Nature chooses an order of votes and the game
proceeds to Step 3.

3. The voting process begins. The coalition Iq forms if and only if the proposal of aq
is accepted by all players in Iq. In this case, Iq becomes the ruling coalition, and
each player i ∈ N receives payoff Ui(Iq) = xi+wi(Iq). Otherwise, following the first
rejection of the proposal, the game proceeds to Step 4.

4. If q < |I0|, Nature randomly picks a new agenda setter aq+1 ∈ I0 \ {a1, a2, . . . , aq}
and the game returns to Step 2. If q = |I0|, then I0 becomes the ruling coalition
and each player i ∈ N receives payoff Ui(I0) = xi + wi(I0).

The solution concept is subgame perfect equilibrium (SPE). The extensive-form game
specifies players’ strategies in any such equilibrium. A pure strategy of any player i ∈ I0

is a pair of functions σi(h) = (vi(h,P),Pi(h)) specifying her behavior at each decision
node h: the function vi(h,P) specifies player i’s vote (either ‘Yes’ or ‘No’) in any history
h where Nature selects her to vote on a proposal P , and Pi(h) specifies the coalition that
player i ∈ I0 proposes if selected by Nature as the agenda setter in history h. According
to the extensive-form game, if i ∈ N \ I0, player i may only be a voter throughout the
game.7 Thus, the strategy of any i ∈ N \ I0 is the voting function vi(h,P), which assigns
either ‘Yes’ or ‘No’ to any proposed ruling coalition P containing i in any history h where
Nature selects her to vote on P .

7All results continue to hold if the game is modified so that all players can be both voters and
proposers.
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We now establish existence and uniqueness of the ruling coalition in the non-cooperative
coalition formation game, a preliminary result that prepares our analysis of the equilib-
rium’s resilience to exogenous shocks. We also show that the SPE outcome of the coali-
tion formation game coincides with the ruling coalition characterized by the axiomatic
approach in Section 3.1.

Proposition 2. 1. (Existence) Suppose that Assumptions 1–2 hold and that ϕ(I0) sat-
isfies Axioms 1–3. Then, for any I ∈ ϕ(I0), there exists a pure-strategy SPE σI that
produces I as the ruling coalition. In this SPE, each player i ∈ N receives payoff
Ui(I) = xi + wi(I).

2. (Uniqueness) Suppose that Assumptions 1–3 hold, that ϕ(I0) satisfies Axioms 1–3,
and that ϕ(I0) = {I}. Then, in any SPE, I is the ruling coalition. In particular,
in any SPE, each player i ∈ N receives payoff Ui(I) = xi + wi(I).

The intuition is straightforward given Assumptions 1–3 and the axiomatic character-
ization in Proposition 1, where ϕ(I0) = argmaxW∈W G(W ) for any I0 ∈ W . Any ruling
coalition I identified by the axiomatic analysis (i.e., I ∈ ϕ(I0)) can be supported by an
SPE in which every agenda setter from I0 proposes I, and every voter from I0 accepts I
and rejects any other proposal. Under the supermajority rule β ∈ (1/2, 1], any coalition
I ′ proposed before I must include at least one player from I. Since coalitions form under
unanimity, the proposed strategy prevents any such I ′ from becoming the ruling coali-
tion, ensuring that I forms.8 Moreover, in the axiomatic analysis, Assumption 3 implies
that the correspondence ϕ : W → 2N is single-valued, so any SPE yields the same ruling
coalition.

Remark 2 (A direct property of the ruling coalition). We comment on a direct property
of the ruling coalition, which is useful for our main analysis on resilience. We define
“potential ruling coalitions” as follows.

Definition 2. For any power and resource mappings p(·) and x(·), define the set of
potential ruling coalitions as

Z := {I ∈ W | ∄I ′ ∈ W such that PI′ > PI and XI′ < XI} . (3.1)

Figure 2 illustrates the potential ruling coalitions, which are the blue dots in the figure.
Intuitively, a winning coalition is a potential ruling coalition if and only if there does not
exist another winning coalition with strictly higher power and strictly lower resources.

8Off-path equilibrium strategies are reported in Equation 3 in the proof of Proposition 2(1) in the
appendix.
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Figure 2: I is the unique ruling coalition of the
game.

Figure 3: I is the unique ruling coalition under
heterogeneous but consistent preferences over Z
(each color represents one player’s preferences over
Z).

It is straightforward that the ruling coalition in Proposition 2 must be a potential ruling
coalition. Though simple, this property will be useful in our subsequent analysis.

Remark 3 (Robustness without Assumption 2). While Assumption 2 pins down a ruling
coalition, our resilience analysis does not require it. It is enough that preferences be
consistent on the set of potential ruling coalitions Z, so that a ruling coalition is well-
defined and we can later study its resilience to external shocks (Figure 3). Moreover, the
resilience analysis under Assumption 2 is informative even when preferences differ across
members, i.e., when insiders disagree about what constitutes a “good” ruling coalition.
As we discuss below, such preference heterogeneity tends to reduce the ruling coalition’s
external resilience.

4 Main analysis on coalitional resilience

This section studies the resilience of the ruling coalition, which is the central part of
the paper. Our analysis proceeds in three steps. First, Proposition 3 provides a useful
characterization of the ruling coalition and allows us to define “internal” and “external”
resilience, i.e., robustness to changes in the power and resources of members versus out-
siders. Second, Proposition 4 shows that the ruling coalition that is most externally
resilient has a hierarchical structure. Third, we show that internal and external resilience
can trade off, depending on the “intensity” of plundering. Studying coalitional resilience
is also useful for understanding the dynamics of the ruling coalition.

4.1 Internal and external resilience

Section 4.1 first establishes that a ruling coalition must have a relatively higher power-
to-resource ratio than alternative winning coalitions. Equally important, Section 4.1
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shows that it is sufficient for the ruling coalition to dominate two types of threats: sub-
coalitions of the ruling coalition and alternative coalitions that include players outside the
ruling coalition. This distinction reflects the central challenges from regime insiders and
outsiders (Svolik (2012); Meng (2020); Paine (2021); Egorov and Sonin (2024)), enabling
us to distinguish between two notions of resilience.

To proceed, we first define the set of “best sub-coalitions.”

Definition 3. For any p(·) and x(·) and any subset of players I, define the set of best
sub-coalitions of I as follows:

AI := {A ⊆ I |A ̸= ∅, ∄A′ ⊆ I such that PA′ > PA and XA′ < XA} . (4.1)

For any subset of players I ⊆ N , AI includes the best subsets of I, i.e., those for which
there does not exist another subset of I with both higher power and lower resources.
Equation 4.1 is analogous to Equation 3.1 in Definition 3.1 for potential ruling coalitions,
but restricts attention to sub-coalitions of the coalition in question. We can now prove
Proposition 3, which characterizes the two types of threats to the ruling coalition.

Proposition 3. Fix the game Γ =
(
I0, p(·), x(·), {Ui(·)}i∈N , β

)
and suppose Assumptions

1–3 hold. Then ϕ(I0) = {I} if and only if I ∈ W and:

(i) For all Ains ∈ (AI \ {I}) ∩W, G(I) > G(Ains) (i.e., there is no profitable internal
secession).

(ii) For all Aext ∈ AN\I and for all Ains ∈ AI with Ains∪Aext ∈ W, G(I) > G(Ains∪Aext)

(i.e., there is no profitable external secession).

Proposition 3 distinguishes between two types of alternatives that the ruling coalition
must dominate: its own subsets (Condition (i)) and coalitions that include outsiders
(Condition (ii)). It shows that a necessary and sufficient condition for I to defeat all
alternative winning coalitions is to dominate (i) all its nontrivial best sub-coalitions and
(ii) the combinations of its best sub-coalitions with best sub-coalitions of outsiders. The
following example illustrates the proposition.

Example 1. Suppose that for a ruling coalition I, AI =
{
Ains

1 , Ains
2 , I

}
where Ains

1 , Ains
2 ∈

W, and AN\I = {Aext
1 , Aext

2 }, where Aext
2 = N \I. Condition (i) states that I must be able

to win against both Ains
1 and Ains

2 . Condition (ii) requires I to dominate any coalition of
the form Ains

j ∪ Aext
k , where j, k ∈ {1, 2}.

Motivated by Condition (i) of Proposition 3, we now define the key object for our
analysis of internal resilience. Using the indifference curve HI(·) over aggregate power P
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Figure 4: The internal safe area S int is the shaded region.

and aggregate resourcesX defined in Definition 1, Condition (i) can be expressed in (P,X)

space. For example, in Example 1, the ruling coalition must satisfy XAins
j
> HI(PAins

j
)

for j ∈ {1, 2}, which identifies a region in the (P,X) plane. This motivates the following
definition.

Definition 4. For the ruling coalition I, the “internal safe area” is

S int
I =

{
(P,X) ∈ R2

++

∣∣ X > HI(P )
}
. (4.2)

A ruling coalition I has the same internal resilience as a ruling coalition J if and only if
S int
I = S int

J . A ruling coalition I is strictly (weakly) more internally resilient than a ruling
coalition J if and only if S int

J ⊊ S int
I (respectively, S int

J ⊆ S int
I ).

For any coalition I to be the ruling coalition, all its best sub-coalitions must lie in S int.
This guarantees that all members of I prefer I to any best sub-coalition of I, satisfying
Condition (i) of Proposition 3. To simplify notation, we write S int when there is no
confusion. Figure 4 illustrates the internal safe area S int for a coalition I. This set plays
a central role in our subsequent analysis of internal resilience. In particular, we will see
that a coalition I remains stable if, after an exchange of power and resources within I,
all its best sub-coalitions remain inside the internal safe area S int.

We now turn to “external” threats. For any best sub-coalition of outsiders Aext and any
best sub-coalition of insiders Ains, Condition (ii) of Proposition 3 requires G(I) > G(Ains∪
Aext), which is equivalent to XAins∪Aext > HI(PAins∪Aext). Since aggregate power and
resources are additive, this condition can be written as XAins +XAext > HI(PAins +PAext).

To illustrate the geometric interpretation, consider Ains
1 in Example 1. We ask which

pairs (PAext , XAext) for a best sub-coalition Aext of outsiders ensure that Ains
1 ∪Aext is not

preferred to I. To do so, shift the curve X = HI(P ) by the vector (−PAins
1
,−XAins

1
) and

denote the shifted curve by X = H1
I (P ). Analogously to the internal safe area, we define

the “external safe area” for a ruling coalition I.
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Definition 5. Consider a ruling coalition I with its set of best sub-coalitions AI . For
any Ains

j ∈ AI , define
Hj

I (P ) := HI(P + PAins
j
)−XAins

j
, (4.3)

i.e., the indifference curve shifted by (−PAins
j
,−XAins

j
).

The area externally safe relative to Ains
j is

Sext
j ≡

{
(P,X) ∈ R2

++

∣∣ P < βPN and X > Hj
I (P )

}
. (4.4)

Define the external safe area for the ruling coalition I as

Sext
I ≡

⋂
Ains

j ∈AI

Sext
j . (4.5)

A ruling coalition I has the same external resilience as a ruling coalition J if and only
if Sext

I = Sext
J . A ruling coalition I is strictly (weakly) more externally resilient than a

ruling coalition J if and only if Sext
J ⊊ Sext

I (respectively, Sext
J ⊆ Sext

I ).

What is the intuition behind Definition 5 and “external safety”? First, outsiders cannot
have P ext ≥ βPN . If they did, this outsider group would itself have supermajority power.
Since PI ≥ βPN is required for I to be a ruling (winning) coalition, such an outsider
group would necessarily be able to form a winning coalition on its own, and I could not
remain the ruling coalition. Hence P ext < βPN is a necessary condition for an outsider
group to be “safe” for any ruling coalition I.

Second, fix a best sub-coalition of insiders Ains
j ∈ AI . For any best sub-coalition

of outsiders Aext that lies exactly on the shifted indifference curve Hj
I (P ), insiders are

indifferent between the current ruling coalition I and the alternative coalition Ains
j ∪Aext.

If Aext lies in the region Sext
j , then Ains

j ∪ Aext is strictly worse than I, so outsiders with
such (P,X) cannot combine with Ains

j to form a profitable external deviation. In this
sense, Sext

j is “externally safe” relative to Ains
j . Taking the intersection over all Ains

j ∈ AI

yields the external safe area Sext
I , i.e., the set of outsider best sub-coalitions that are

simultaneously safe against any insider best sub-coalition.
Proposition 3 provides an additional insight: it underscores that a ruling coalition

must maintain a relatively high power-to-resource ratio compared to relevant alternatives
(as reflected in both the internal and external safe areas).9 For example, the proposition
offers a rationale for the voluntary destruction of resources by a ruling coalition when
confronting a threatening alternative.

9Example 4 in the appendix demonstrates that neither the player with the highest power nor the one
with the lowest resources is necessarily included in the ruling coalition.
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(a) Condition (ii) of Proposition 1 with respect
to Ains

1 .
(b) Condition (ii) of Proposition 1 with respect
to Ains

2 ..

(c) Condition (ii) of Proposition 1 with respect
to I.

(d) Condition (ii) of Proposition 1 with respect
to all sub-coalitions of I.

Figure 5: The external safe area—Sext: the blue area above the red curve.

Remark 4 (Heterogeneity of preferences and resilience). How does preference hetero-
geneity within the ruling coalition affect external resilience once Assumption 2 is relaxed?
Since the external safe area is defined as the region above the envelope of the bound-
aries induced by insiders’ best sub-coalitions, introducing an insider whose preferences
differ from others can only add an additional boundary, which can only shift the enve-
lope weakly upward. Hence, the external safe area can only weakly shrink, i.e., external
resilience weakly decreases. The same logic applies to the internal safe area.

Now that we have provided a precise characterization of internal and external safe
areas, we are ready to study internal and external resilience of a ruling coalition.

4.2 Which ruling coalitions are more externally resilient?

Consider a ruling coalition I and suppose there are two players i, j ∈ I with pi > pj

and xi < xj. Holding the power and resources of all other players fixed, transfer either
(i) a portion of player i’s power, with 0 < ∆p ≤ pi−pj

2
, or (ii) a portion of player j’s

resources, with 0 < ∆x ≤ xj−xi

2
, to player i (Figure 6). The following proposition

establishes that such an equalizing transfer within the ruling coalition (weakly) reduces
the risk posed by relatively stronger or poorer members, and therefore (weakly) increases
the coalition’s external resilience. This result is quite general and does not depend on
the precise specification of the plundering function G(·), i.e., on the shape of indifference
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Figure 6: Exchange of powers and resources between player i and player j—from blue to red.

curves.

Proposition 4. Suppose I is the unique ruling coalition of the game Γ, and there exist
i, j ∈ I with pi > pj and xi < xj. Holding fixed the powers and resources of players in
I \ {i, j}, consider the modified coalition (I \ {i, j}) ∪ {i′, j′} where

pi′ = pi −∆p, xi′ = xi +∆x, pj′ = pj +∆p, xj′ = xj −∆x,

for any 0 < ∆p ≤ pi−pj
2

and 0 < ∆x ≤ xj−xi

2
. Then the external resilience of (I \ {i, j})∪

{i′, j′} is weakly higher than the external resilience of I.

Proposition 4 is the first key result of the paper. The proof is in Appendix A and pro-
ceeds in three steps. Step 1 shows that the exchange from {i, j} to {i′, j′} has two effects:
(i) some best sub-coalitions of I end up with lower power and higher resources, and hence
become less threatening; and (ii) the identity of best sub-coalitions may change, i.e., new
best sub-coalitions may emerge and some previously best sub-coalitions may cease to
be best. Step 2 shows that effect (i) cannot reduce external resilience. For effect (ii),
note that before the exchange there must exist a sub-coalition that was (weakly) more
threatening than any emerging best sub-coalition (i.e., it had weakly higher power and
weakly lower resources). This is shown by contradiction: otherwise, the emerging best
sub-coalition would already have been a best sub-coalition before the exchange. Hence,
any newly emerging best sub-coalition cannot be more threatening than a previously
best sub-coalition, and therefore cannot reduce external resilience. Moreover, if a previ-
ously best sub-coalition ceases to be best after the exchange, it cannot reduce external
resilience by Proposition 3. Step 3 argues that these changes do not generate a profitable
internal secession. Intuitively, once I can withstand internal secession (Condition (i) of
Proposition 3) before the exchange, replacing some best sub-coalitions by a strictly less
threatening set after the exchange cannot trigger internal secession.

Corollary 1 (Hierarchy). As an implication of Proposition 4, iterating the exchanges of
power and resources depicted in Figure 6 yields “conditional equality” (or “conditional pro-
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Figure 7: A coalition consisting of m ranks. Each blue dot represents a rank of players with identical
power and resources and ranks are totally ordered by power P and resources X.

Figure 8: Ambiguity in comparing external resilience of proportional internal distributions.

portionality”) within the ruling coalition. Coalition members are partitioned into classes:
within each class, members have identical power and resources, and across classes, power
and resources are proportional, with the highest class holding the most power and re-
sources, followed by the second class, and so on. At each step, external resilience weakly
increases. Consequently, the resulting conditionally proportional allocation has weakly
higher external resilience than the initial allocation. In this sense, iterated exchanges
produce a “hierarchy” (Figure 7).

It is important to note that comparing the external resilience of different “hierarchies”—
i.e., different proportional configurations of power and resources within the ruling coalition—
generally requires additional structure on the plundering function G(·). For instance, fix
the total power and resources of a two-player ruling coalition I and consider two internal
configurations, {i, j} and {i′, j′}, such that PI = pi + pj = pi′ + pj′ and XI = xi + xj =

xi′ + xj′ (Figure 8). Then there is no general argument that ranks which configura-
tion yields higher external resilience without further restrictions on G(·) (e.g., beyond
concavity of indifference curves).

Remark 5 (A new perspective on hierarchy). Corollary 1 offers a perspective on why
the most resilient plundering coalitions tend to exhibit hierarchical organization with well-
defined ranks. Examples include stable oligarchies, Weberian bureaucracies, and armies.

Remark 6 (Dynamic implications). It is natural to ask what happens after outsiders
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are plundered. Plundering lowers outsiders’ resources and raises their power-to-resource
ratios, potentially making some outsiders more attractive future coalition partners and
thereby destabilizing the current ruling coalition. Our static game and resilience analysis
can be interpreted as a benchmark for a repeated stationary-bandit environment: each
season the ruling coalition extracts and consumes the extracted resources, while outsiders
rebuild resources through production before the next season. Each season then starts from
a recovered distribution x(·) and the same coalition-formation and extraction problem is
played again. In such a setting, extraction can persist period after period as long as the
ruler does not accumulate resources and preserves outsiders’ productive capacity (e.g.,
does not burn the land or kill the farmers), unless an exogenous shock disrupts it. In
this sense, our resilience object provides a simple benchmark for studying how extractive
coalitions evolve over time in the presence of shocks.

Remark 7 (Preference heterogeneity and hierarchy). Importantly, the logic of the proof
of Proposition 4 continues to hold when preferences are heterogeneous within the ruling
coalition. If an insider strictly prefers another ruling coalition, then the coalition’s re-
silience is trivially zero, regardless of the external shock. Aside from this degenerate case,
Proposition 4 extends under a weaker version of Assumption 2 that allows for preference
heterogeneity. The key force in the proof remains unchanged: the exchange shifts certain
best sub-coalitions up and left in (P,X)-space, which pushes down the relevant boundary
curves. Under Assumption 1, for any insider (regardless of the curvature of her indiffer-
ence curves), a sub-coalition that moves up/left becomes weakly more attractive after the
exchange. Hence, the associated boundary for that insider shifts weakly downward; aggre-
gating across insiders, this weakly expands the external safe area. Therefore, the exchange
in Figure 6 enlarges the external safe area in the same direction as in the benchmark case
of homogeneous preferences under Assumption 2.

In Proposition 4, the exchange of power and resources weakly increases the external
resilience of the ruling coalition. The next sections characterize conditions under which
the exchange strictly increases external resilience, as well as conditions under which ex-
ternal resilience remains unchanged. In particular, we highlight the role of the shape of
indifference curves—convex versus concave—which we interpret as capturing the strength
of property-rights protection.

4.3 Power-intensive and power-light plundering

Concave and convex indifference curves capture a fundamental difference in how the
marginal value of power varies with a coalition’s power. Consider a small increase in
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a coalition’s power. To keep insiders indifferent, by how much must the coalition’s re-
sources increase? Recall that insiders dislike resources held inside the coalition, since
these resources are protected from plunder. Under concave indifference curves, when
the coalition starts with a low level of power, it can tolerate a large increase in internal
resources while remaining indifferent: the marginal value of power is high, so a small
increase in power offsets a large increase in resources. When the coalition starts with
a high level of power, it can tolerate only a small increase in resources while remaining
indifferent: the marginal value of additional power is low. In other words, under concave
indifference curves, the marginal value of power decreases as coalition power increases.

Under concave indifference curves, individuals thus have little appetite for a ruling
coalition with very high aggregate power, i.e., for an “inclusive” ruling coalition that brings
many players inside.10 This case corresponds to a power-light plundering environment:
additional power has sharply diminishing marginal value, so coalitions prefer to remain
relatively exclusive to keep more resources outside and thereby increase the extractable
pool.

By contrast, under convex indifference curves, as the power of the ruling coalition
increases, the marginal value of additional power also increases. This induces the for-
mation of a more “inclusive” ruling coalition with high aggregate power. For instance,
when institutions constrain plundering, inclusive ruling coalitions may have an advan-
tage because greater aggregate power helps overcome these constraints.11 Accordingly,
throughout the rest of the paper, we refer to concave and convex indifference curves as,
respectively, power-light and power-intensive plundering environments.

The following proposition shows that, under convex indifference curves or power-
intensive plundering environments, the internal configuration of power and resources may
not affect external resilience.

Proposition 5 (Power-intensive plundering and invariance of external resilience). Sup-
pose that preferences over coalitions (P,X) have strictly convex indifference curves. For
any ruling coalition I and any A ∈ AI \ {I}, we have

Sext
I ⊆ Sext

A .

Hence,
Sext :=

⋂
A∈AI

Sext
A = Sext

I .

10This preference has an analogy in standard consumer theory: although a consumer prefers more
of a good, diminishing marginal utility implies that extremely large amounts of the same good are not
valuable at the margin.

11Example 3 in the appendix provides a more detailed discussion of power-intensive and power-light
plundering environments.
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Figure 9: Comparing the external safe area for I and Ains
1 ∈ AI\I under convex indifference curves.

Therefore, any exchange of power and resources within I that preserves internal stability
leaves the external resilience of I unchanged.

Proposition 5 is proved in Appendix A. Fix a ruling coalition I and Ains
1 ∈ AI \ {I},

a nontrivial best sub-coalition of I (an insider sub-coalition). Under strictly convex
indifference curves (power-intensive plundering), insiders strictly prefer more inclusive
ruling coalitions. Hence, for any best sub-coalition of outsiders B ∈ AN\I , insiders in
Ains

1 prefer B ∪ I to B ∪ Ains
1 . Any profitable and feasible external deviation of the form

B∪Ains
1 is therefore (weakly) dominated by the deviation B∪I. Thus, the set of outsider

coalitions that can induce secession with Ains
1 is contained in the set that can induce

secession with I, which implies Sext
I ⊆ Sext

1 , as illustrated in Figure 9. Since I is itself
included among the insider best sub-coalitions, we obtain

Sext :=
⋂

Ains
i ∈AI

Sext
i = Sext

I .

Therefore, as long as internal exchanges of power and resources do not trigger internal
secession, they leave Sext—and hence external resilience—unchanged.

Remark 8. Proposition 5 suggests that when property rights are better protected—even if
plundering is not fully eliminated—a “specialized” coalition that separates political power
from economic resources can be highly stable against external shocks.

Next, we show that when the plundering technology is sufficiently power-light (i.e.,
indifference curves are sufficiently concave), external resilience strictly increases as we
transition to a hierarchy with well-defined ranks by iterating the exchanges in Figure 6
within the ruling coalition.

To obtain a parametric measure of concavity, we focus on a CES family of plundering
functions {Gρ}ρ ̸=0. Fix a ruling coalition I with aggregate power and resources (PI , XI).
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For α ∈ (0, 1) and ρ ̸= 0, define

Gρ(P,X) :=

[
α

(
P

PI

)ρ

+ (1− α)

(
X̄ −X

X̄ −XI

)ρ]1/ρ
,

where X̄ is assumed to be sufficiently large (with X̄ > XI) and (P,X) ∈ R+ × (0, X̄).
For ρ ≤ 1, Gρ is concave in (P,X) (Figure 10), corresponding to increasingly power-light
plundering as ρ decreases.12

Figure 10: Isoquants of the CES plundering technology Gρ(P,X) for different values of ρ, normalized to
pass through (PI , XI). Lower ρ implies a more concave/ Leontief-like shape.

The next proposition shows that for any initial distribution of power and resources
within the ruling coalition, there exists an indifference curve passing through I that is
sufficiently concave—i.e., a sufficiently small ρ in the CES family {Gρ}—such that iter-
ating the exchange in Figure 6 until the coalition becomes hierarchical strictly increases
external resilience.13

Proposition 6 (Power-light plundering and strict gains from hierarchy). Suppose that
I is a ruling coalition and preferences over coalitions (P,X) are given by Gρ(·) for some
ρ < 1. Further suppose that I ′ is the allocation obtained from I by iterating the bilateral
exchanges in Figure 6 until the coalition becomes a hierarchy with well-defined ranks.
Then there exists ρ̄ < 1 such that if ρ ≤ ρ̄,

Sext
I ⊊ Sext

I′ ,

so reaching a hierarchical allocation under power-light plundering strictly increases exter-
nal resilience.

12The elasticity of substitution between power P and the resource-loss slack X̄ −X is σ = 1
1−ρ . Thus,

lower ρ implies lower σ, and the Leontief limit obtains as ρ → −∞.
13The logic is not specific to the CES class. We use this family only because it provides a transparent

notion of “sufficient concavity” (via ρ) and allows for a rigorous and tractable argument.
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The proof is in Appendix A. Consider the sequence of bilateral exchanges within I

described in Figure 6, and suppose these exchanges are repeated until there remain two
insiders i, j ∈ I such that pi > pj and xi < xj and the exchange is still applicable. If the
external safe area has already expanded at some earlier step, the result follows because
Proposition 4 implies that the final exchange cannot shrink the external safe area. Thus,
assume that external resilience has remained constant up to this point.

Denote the sub-coalition Ains
1 := I \ {j} and define the shifted indifference curve

through this sub-coalition as

H1
I (P ) := HI

(
P + PAins

1

)
−XAins

1
.

It is straightforward to show that Ains
1 is a best insider sub-coalition of I. After the

exchange between i and j, Ains
1 moves left and up in (P,X)-space, e.g., to Ains

2 as in
Figure 12. Under Assumption 1, for any indifference curve, a move from Ains

1 to Ains
2

strictly enlarges the corresponding external safe area, i.e.,

Sext
1 ⊊ Sext

2 .

14 Moreover, no sub-coalition that includes j but excludes i can be a best insider sub-
coalition after the exchange. Otherwise, replacing j with i would yield a sub-coalition
with weakly higher power and weakly lower resources (with at least one strict inequality),
which is a contradiction.

Therefore, the external safe area can expand strictly at this step only if H1
I (P ) is

binding in the construction of Sext
I , i.e., only if H1

I (P ) uniquely determines the upper
envelope

max
Ains

i ∈AI

H i
I(P )

for some P ∈ (0, βPN). The proof shows that for any given initial allocation of power
and resources within the ruling coalition, there exists a sufficiently concave indifference
curve HI (equivalently, a sufficiently small ρ) such that the boundary H1

I (P ) is uniquely
binding at some P ∈ (0, βPN); that is, H1

I (P ) uniquely attains maxAins
i ∈AI

H i
I(P ) at that

P .
To shed further light on the geometry, consider the extreme case ρ → −∞, where

the plundering technology becomes Leontief and the indifference curve in (P,X)-space is
an inverse-L with a kink at (PI , XI) (Figure 11). In this limit, for any initial allocation
of power and resources within I and any associated collection of best sub-coalitions AI ,
the boundary induced by each best sub-coalition (e.g., A and B in Figure 11) uniquely

14This is shown in the proof of Proposition 4.
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Figure 11: Under sufficiently concave (Leontief-like
in limit) indifference curves, the boundary corre-
sponding to a best sub-coalition is uniquely binding
on the upper envelope that defines the external safe
area.

Figure 12: Under concave indifference curves, the
exchange in Figure 6 expands the external safe area
for best sub-coalitions that contain i (the member
with higher power but lower resources than j).

determines the upper envelope
max

Ains
i ∈AI

H i
I(P )

on a nonempty interval of P ∈ (0, βPN). For instance, as Figure 11 illustrates, the
boundary of the external safe area of I (the grey envelope) is piecewise determined in an
ordered way: the right segment (green) is pinned down by the least-powerful best sub-
coalition B, the middle segment (red) by the next-most powerful best sub-coalition A, and
the left segment (black) by I itself (viewed as a best sub-coalition of itself). Therefore,
when ρ is sufficiently low—i.e., indifference curves are sufficiently concave—the exchange
between i and j strictly expands the external safe area, and iterating exchanges until
the coalition becomes hierarchical strictly increases external resilience under power-light
plundering.

Remark 9 (Weak property rights and the emergence of hierarchy). Our analysis so far
highlights a central insight: the resilience advantage of hierarchy is stronger when prop-
erty rights are weak than when they are strong. Proposition 4 shows that moving the
ruling coalition toward a hierarchical allocation never decreases external resilience, under
any plundering function G(·, ·) satisfying Assumptions 1–3. We then contrast power-
intensive and power-light plundering environments, interpreting convex versus concave
indifference curves as capturing the strength of constraints on extraction (e.g., property-
rights protection). As a hierarchy emerges, external resilience is unchanged under strong
property-rights protection (power-intensive plundering; Proposition 5), but it strictly in-
creases when property rights are sufficiently weak (power-light plundering; Proposition
6). Taken together, these results suggest that when constraints on plundering are weak,
organizing the ruling coalition as a hierarchy can deliver a strict resilience gain against
outsider threats, whereas this benefit is absent when property rights are well protected.
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Figure 13: Exchange of power and resources between player i and player j—from blue to red.

4.3.1 Coalitions of absolutely equal members

It is important to note that the analysis above does not imply that a ruling coalition is, in
general, most externally resilient when its members are absolutely equal. Without further
restrictions on the plundering function and on the joint distribution of power and resources
within the ruling coalition, no general ranking is possible. That said, an absolutely
equal coalition does maximize external resilience in a particular case: when the most
powerful member in the ruling coalition also has the lowest resources, the second most
powerful has the second lowest resources, and so on. In that case, it is straightforward
to implement a sequence of exchanges of the type in Figure 6 that converges to absolute
equality.15 The following examples illustrate a more general case in which the exchange
of power and resources depicted in Figure 13 within the ruling coalition also increases
external resilience. Together with Proposition 4, this generates a broad range of single-
class coalitions.

Example 2. Consider a ruling coalition I = {i, j} with pi < pj and xi < xj. Let HI(·)
denote the (concave) indifference curve through I. Suppose player i is more threatening
than j, i.e., Sext

i ⊂ Sext
j . If we perform the exchange in Figure 13 between i and j and

obtain Sext
i ⊂ Sext

i′ (the red region covers the blue region in Figure 14), then the external
safe area of the ruling coalition expands under this exchange.

Intuitively, this occurs because player i is much more threatening than player j given
HI(·). After the exchange, taking resources from player j may make her more threatening
(moving from j to j′), but this effect is dominated by the reduction in the threat posed by
player i when she becomes better endowed (moving from i to i′). This force is strongest
under power-light plundering (high concavity), where low-resource insiders are especially
threatening because they have high power-to-resource ratios.

Remark 10. Although we do not provide a general ranking here, Example 1 suggests an
important intuition: when property-rights protection is extremely weak and there exists a

15More precisely, start by exchanging between the two most powerful players until they become equal
in both power and resources; then continue with the third most powerful player until the top three
become equal; and so forth.

26



Figure 14: The increases in the external resilience due to an exchange of powers and resources as in
Figure 12.

poor but sufficiently powerful group within the ruling coalition, a single-class coalition can
be particularly externally resilient. This perspective may help rationalize the egalitarian
thrust of some communist revolutions—but specifically in settings where the revolutionary
base is both economically disadvantaged and sufficiently powerful (e.g., urban proletarians
in some historical contexts).

4.4 Trade-off between internal and external resilience

We now link external and internal resilience by characterizing when a trade-off may arise
between them.

4.4.1 Power-intensive plundering

We begin by showing that when plundering is power-intensive, a trade-off can arise be-
tween external and internal resilience as the plundering environment changes. Specifically,
shifting toward more power-intensive plundering lowers external resilience but raises in-
ternal resilience. To formalize this comparative-static notion, we introduce a more general
definition of the “intensity of plundering.” If the marginal rate of substitution between
power and resources is strictly higher, then the marginal value of adding power to the
ruling coalition is higher relative to the marginal cost of retaining internal resources that
cannot be plundered. This corresponds to a more power-intensive (i.e., less power-light)
plundering environment.

Definition 6. The indifference curve HI(·) represents a more power-light plundering
environment than H ′

I(·) if and only if for all P ∈ [βPN , PN ],

d

dP
HI(P ) <

d

dP
H ′

I(P ),

denoted by H ≻ H ′.
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Proposition 7. Fix a ruling coalition I. Suppose the indifference curves HI(·) and H ′
I(·)

are convex, and that internal and external shocks are independently distributed. Then
H ≻ H ′ if and only if the internal resilience of I under H is lower than under H ′ and
its external resilience under H is higher than under H ′.

In a power-intensive plundering environment, the most threatening external devia-
tions are those that include outsiders and all members of the ruling coalition, rather
than those formed by outsiders together with a non-trivial insider subset. The reason
is that power-intensive plundering (convex indifference curves) makes aggregate power
increasingly valuable at the margin. Holding the outsider block fixed, expanding the
insider component from a proper subset Ains ⊊ I to the full coalition I raises aggregate
power, and under convexity this gain in power more than compensates for the fact that
bringing in additional insiders also brings in protected internal resources that cannot be
plundered. Hence, for any outsider best sub-coalition, deviations of the form Aext ∪ I are
weakly preferred to deviations of the form Aext ∪ Ains, implying that the external-safe
constraint is effectively pinned down by deviations that involve I itself.

This has a direct implication for resilience. As the environment becomes more power-
intensive, the propensity toward inclusiveness strengthens, so it becomes easier for out-
siders to construct a profitable deviation precisely of the most threatening form Aext ∪ I.
The external safe area therefore shrinks, and external resilience falls. At the same time,
the same force raises internal resilience: because aggregate power is increasingly valuable,
insiders are less tempted by breakaway sub-coalitions with lower power, so internal se-
cession is less attractive. Thus, power-intensive plundering induces a trade-off: external
resilience decreases while internal resilience increases (Figure 15).

Remark 11. This implies that when property rights are relatively well protected—so
plundering is more power-intensive—shifting toward lower plundering intensity can reduce
the likelihood of an insider coup d’etat while increasing the risk of a popular uprising, and
vice versa. In this sense, the ruling coalition faces a trade-off between stabilizing power-
sharing among insiders and maintaining authoritarian control against outsiders.

4.4.2 Power-light plundering

As in the convex case, it is straightforward to show that moving toward less power-light
plundering increases internal resilience when indifference curves are concave (Figure 16).
However, how a change in plundering intensity affects external resilience is generally
ambiguous in this region. Example 3 shows that a shift toward more power-intensive
(i.e., less power-light) plundering can yield either higher or lower external resilience,
depending on the nature of external perturbations.
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Figure 15: Trade-off between internal and external resilience under convex indifference curves.

Figure 16: The increasing effect of a weaker plundering on internal resilience under concave indifference
curves.

Example 3. Consider a ruling coalition I and a plundering technology represented by
the indifference curve H1 passing through I. Suppose the plundering environment shifts
toward more power-intensive plundering, moving from H1 to H2. Suppose further that
there is a best insider sub-coalition Ains

1 ∈ AI that is realized with probability one. The
effect of the shift from H1 to H2 on external resilience is ambiguous (Figure 17): depending
on the configuration of external perturbations, the external safe area associated with Ains

1

may expand or shrink.
For instance, consider two distributions over external shocks, Prext1 (·, ·) and Prext2 (·, ·),

where Prext1 assigns relatively more probability mass to the outsider best sub-coalition Aext
2

than to Aext
1 (compared to Prext2 ), as illustrated in Figure 17. Since internal and external

shocks are independent, under Prext1 the coalition Aext
2 ∪ Ains

1 is more likely to arise than
Aext

1 ∪ Ains
1 . Suppose that moving from H1 to H2 makes Aext

1 ∪ Ains
1 newly preferred to I

(while it is not preferred under H1). Then external resilience falls under Prext1 relative to
Prext2 , because the newly dangerous deviation receives more probability weight.

Alternatively, suppose Prext2 assigns relatively more probability mass to Aext
1 than to

Aext
2 (compared to Prext1 ), so that Aext

1 ∪ Ains
1 is more likely to arise than Aext

2 ∪ Ains
1

under Prext2 (·, ·). Suppose further that moving from H1 to H2 makes Aext
2 ∪Ains

1 no longer
preferred to I (while it is preferred under H1). Then external resilience falls under Prext2

relative to Prext1 , because the deviation that becomes newly safe receives more probability
weight under Prext2 .
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Figure 17: The ambiguous effect of a weaker plundering on external resilience.

Thus, the effect of shifting from H1 to H2 on external resilience depends on how
the change in the indifference curve reclassifies which outsider coalitions are dangerous,
and on where the external-shock distribution places probability mass. In particular, the
trade-off with internal resilience need not hold: it is possible that moving from H1 to H2

increases both internal and external resilience of the ruling coalition.

Although a general argument cannot be made, the above examples suggest that when
external shocks favor coalitions with low power and resources, weaker plundering might
lead to both higher external and internal resilience. This occurs because weaker plunder-
ing increases the tendency to form an inclusive ruling coalition. External sub-coalitions
with low power and resources cannot typically form inclusive coalitions. Therefore, if
the distribution of external shocks gives a higher probability to these external coalitions,
external resilience would increase. This implies that if lower classes with low political
power are more likely to emerge in society, a weaker plundering process might reduce
both the threat of a coup d’etat and a popular uprising.

Remark 12. The above discussion suggests that even imperfect property rights, which do
not entirely prevent exploitation by insiders, can impede the ruling coalition from attaining
both internal and external stability when plundering technology changes. Moreover, a
ruling coalition that engages in power-light plundering may prefer to confront a more
powerful and richer opposition compared to a weaker but poorer one.

5 Concluding remarks

This paper develops a theory of plundering coalitions. We conclude by commenting
on further applications and directions for future work. Our theory shows that the ruling
coalition has a relatively higher power-to-resources ratio than its alternatives. This result
formalizes the concept of Asabiyyah, usually translated as “social cohesion,” which is
a central concept for understanding political dynamics in the Middle East (Khaldun
(1967); Kuran (1996); Alatas (2014)). Specifically, the great historian and sociologist
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Ibn Khaldun argued that nomadic tribes had a much higher level of “social cohesion”
than urban civilizations, and that this strong social cohesion facilitated the conquest of
urban civilizations by nomadic tribes. Our model microfounds the higher social cohesion
of nomadic tribes through their relative poverty compared to urban civilizations, which
generates a high power-to-resources ratio. It is therefore easier for nomadic tribes to form
a coalition to plunder cities, which is a repeated pattern in the pre-modern world. Similar
logic can apply to communist revolutions (Morishima (1974); Roemer (1980); Roemer
(1981); Brewer (2002)), where increasing inequality widens the power-to-resources gap,
thereby incentivizing the proletariat to rebel against the capitalists. Importantly, our
analysis may provide a clue to understanding the oligarchic tendencies of these plundering
coalitions. Our model may explain why successful nomadic conquerors and communist
parties, even when starting as movements of radical equality, eventually evolved into
strictly hierarchical structures.

In future research, our framework may be useful as a methodological approach for
studying the resilience of coalitions to exogenous changes in players’ characteristics and
in the environment governing coalition formation. Moreover, although we study how
coalitions respond to changes in power, resources, and plundering technology, these ob-
jects are exogenous in our model. Endogenizing them could be informative and suggests
several extensions. A natural extension is to allow players to invest in power prior to
coalition formation, which would clarify how the initial distribution of resources shapes
power investment incentives and, ultimately, the ruling coalition. Another extension is to
study environments in which the ruling coalition receives an exogenous flow of resources
in addition to exploiting outsiders.

Another extension is to endogenize the plundering technology—interpreted as property-
rights protection—in a dynamic version of our framework in which ruling coalitions can
invest in institutions over time. This would contribute to the literature on the emergence
and evolution of property-rights protection (Andolfatto (2002); Hafer (2006); Diermeier
et al. (2017)) from the perspective of resilience. Moreover, institutions are persistent
in many settings, so early institutional choices can have long-lasting effects on subse-
quent political and economic outcomes (Persson (2002); Michalopoulos and Papaioannou
(2013); Lowes et al. (2017)). Finally, incorporating networks into the coalition-formation
process is another promising direction. For example, König et al. (2017) studies how a
network of military alliances affects conflict intensity. Extending our model along these
lines could clarify how players’ connections shape political alliances and their resilience.
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Appendix A Proofs

Proof of Lemma 1. Fix u ∈ R. Player i’s indifference curve at utility level u is the level
set

I(u) := {(P,X) ∈ R2 : Gi(P,X) = u}.

To see that I(u) is closed, take any sequence {(Pk, Xk)}k≥1 ⊂ I(u) with (Pk, Xk) →
(P,X). By continuity of Gi,

Gi(P,X) = lim
k→∞

Gi(Pk, Xk) = lim
k→∞

u = u,

so (P,X) ∈ I(u).
Next, we show that indifference curves are strictly increasing. Let P ′ > P andX ′ < X.

By Assumption 1(1a), Gi(P
′, X ′) > Gi(P,X

′), and by Assumption 1(1b), Gi(P,X
′) >

Gi(P,X). Hence Gi(P
′, X ′) > Gi(P,X).

Suppose, toward a contradiction, that I(u) is not strictly increasing. Then there exist
(P1, X1), (P2, X2) ∈ I(u) with P2 > P1 and X2 ≤ X1. If X2 = X1, then Assumption 1(1a)
implies Gi(P2, X2) = Gi(P2, X1) > Gi(P1, X1), contradicting Gi(P2, X2) = Gi(P1, X1) =

u. If X2 < X1, then by the monotonicity implication above, Gi(P2, X2) > Gi(P1, X1),
again a contradiction. Therefore, along any indifference curve, an increase in power must
be accompanied by an increase in resources, so the curve is strictly increasing.

Proof of Proposition 1. Define, for each I ∈ W ,

ϕ(I) := arg max
W∈W

G(W ).

Since W is finite and non-empty, argmaxW∈W G(W ) is well-defined and non-empty, so
ϕ(I) ̸= ∅, establishing the first part of Axiom 1. Moreover, by construction ϕ(I) ⊆ W ,
so Axiom 2 holds.

If I ′ ∈ ϕ(I), then I ′ ∈ argmaxW∈W G(W ), so for any I ′′ /∈ ϕ(I) we haveG(I ′′) < G(I ′).
Conversely, if G(I ′′) < G(I ′), then I ′′ /∈ argmaxW∈W G(W ), hence I ′′ /∈ ϕ(I). This is
exactly Axiom 3. Finally, Assumption 1 implies G(N) = 0, while for any W ∈ W \ {N}
we have G(W ) > 0. Hence N cannot be a maximizer of G over W , so N /∈ ϕ(I) and the
second part of Axiom 1 holds. This proves existence.

For uniqueness, suppose there is another mapping ϕ′ satisfying Axioms 1–3. Fix
I ∈ W and take I ′′ ∈ ϕ′(I). If I ′′ /∈ argmaxW∈W G(W ), let I ′ ∈ argmaxW∈W G(W )

(non-empty by the argument above). Then G(I ′′) < G(I ′), so by Axiom 3 for ϕ′ we must
have I ′′ /∈ ϕ′(I), a contradiction. Hence ϕ′(I) ⊆ argmaxW∈W G(W ), i.e. ϕ′(I) ⊆ ϕ(I).

Conversely, suppose I ′ ∈ ϕ(I) but I ′ /∈ ϕ′(I). By Axiom 1, there exists I ′′ ∈ ϕ′(I).
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Since I ′′ ∈ ϕ′(I) and I ′ /∈ ϕ′(I), Axiom 3 implies G(I ′′) > G(I ′), which contradicts
I ′ ∈ ϕ(I) = argmaxW∈W G(W ). Therefore ϕ(I) ⊆ ϕ′(I), and thus ϕ = ϕ′.

For the second statement, Assumption 3 implies that G takes distinct values on dis-
tinct coalitions in W , so argmaxW∈W G(W ) is a singleton. Hence ϕ is single-valued. This
completes the proof.

Proof of Proposition 2(1). Fix I0 ∈ W and assume β > 1
2
. Let C := ϕ(I0) = argmaxW∈W G(W )

(Proposition 1). Fix any I ∈ C.

Claim 1 (overlap under super-majority). If β > 1
2
, then for any W,W ′ ∈ W we

have W ∩W ′ ̸= ∅.
Proof. If W ∩W ′ = ∅, then PW∪W ′ = PW + PW ′ ≥ 2βPN > PN , contradicting PW∪W ′ ≤
PN . ■

Step 1: primitives for continuation values. For any W ⊆ N and i ∈ N , define the
net payoff component

Gi(W ) :=

g(i)G(W ) if i ∈ W,

0 if i /∈ W,

so that Ui(W ) = xi + Gi(W ).
For each agenda-setter a ∈ I0, fix an arbitrary selection

ψ(a) ∈ arg max
W∈W: a∈W

G(W ).

This is well-defined because I0 ∈ W and a ∈ I0.
At any history h, let A−(h) be the set of agenda-setters already used (including the

current one if h is a voting node on the current proposal), and let

R(h) := I0 \ A−(h)

be the set of remaining agenda-setters. For any i ∈ N and any R ⊆ I0, define

mi(R) :=

maxa∈R Gi(ψ(a)) if R ̸= ∅,

Gi(I0) if R = ∅.

Thus mi(R) is the highest net payoff i can obtain in continuation equilibrium after reject-
ing the current proposal, given that only agenda-setters in R remain (and the terminal
fallback is I0 when R = ∅).

Step 2: define a strategy profile σI.
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Agenda setting. At any agenda-setting history h with agenda-setter a = a(h) ∈ I0,

Pa(h) =

I if a ∈ I,

ψ(a) if a /∈ I.

Voting. Consider any voting history h on a proposal P with voter v ∈ P , and let
R = R(h) be the remaining agenda-setters after the current agenda-setter (i.e., the
agenda-setter of P is already in A−(h)).

• If P = I, then v votes YES.

• If P ≠ I and R ∩ I ̸= ∅, then any v ∈ I ∩ P votes NO (and voters not in I vote
arbitrarily, say YES).

• If P ≠ I and R ∩ I = ∅, then v votes YES iff Gv(P) ≥ mv(R), and NO otherwise.

Step 3: outcome on the equilibrium path. By Claim 1, I ∩ I0 ̸= ∅ because both
I and I0 are in W . Hence with positive probability Nature selects an agenda-setter in
I ∩ I0; under σI such a proposer offers I, all members of I vote YES on I, and the
game ends with ruling coalition I. Moreover, if an agenda-setter a /∈ I is selected before
that happens, then P = ψ(a) ∈ W (it must reach voting), and by Claim 1 we have
ψ(a) ∩ I ̸= ∅. While R ∩ I ̸= ∅, some voter in I ∩ ψ(a) vetoes, so ψ(a) cannot form.
Therefore, before all agenda-setters in I ∩ I0 are exhausted, the only coalition that can
possibly form is I.

Step 4: sequential rationality.

(a) Subgames with R ∩ I = ∅. In such a subgame, no future agenda-setter belongs to
I. Voting rules are exactly the standard acceptance rule relative to the continuation value
mv(R), and each remaining agenda-setter a ∈ R ⊆ I0 proposes ψ(a), which maximizes
G(·) (and hence maximizes her payoff) among winning coalitions containing a. Backward
induction on the finite number of remaining agenda-setters implies that, in every subgame
with R ∩ I = ∅, the continuation strategies form an SPE.

(b) Subgames with R ∩ I ̸= ∅. Fix any such subgame and consider any voting history
on a proposal P ≠ I. Because P reaches voting it must be in W , so Claim 1 implies
P ∩ I ̸= ∅. Let v ∈ P ∩ I. Since R∩ I ̸= ∅, v votes NO under σI , so P is rejected. Hence,
as long as R ∩ I ̸= ∅, no proposal different from I can ever form.

Now consider a member v ∈ I at a voting node on P ̸= I with R∩I ̸= ∅. If v deviates
to YES, the proposal still cannot form unless all insiders in P ∩ I also vote YES; but at
least one insider votes NO by strategy, so v is not pivotal and cannot gain. At a voting
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node on P = I, voting YES yields Uv(I) immediately. Deviating to NO delays the game;
since R ∩ I ̸= ∅, some future agenda-setter in I ∩ I0 will propose I again and it will be
accepted, so deviation cannot improve the payoff.

Finally, consider an agenda-setting node with R ∩ I ̸= ∅ and proposer a ∈ I0. If
a ∈ I, proposing I yields Ua(I) immediately. Any deviation to P ̸= I is rejected by an
insider veto (as argued above), and the continuation still leads to I, so deviation cannot
improve a’s payoff. If a /∈ I, then any proposal that reaches voting must lie in W and
hence overlaps I by Claim 1, so it is vetoed while R ∩ I ̸= ∅; proposing ψ(a) is therefore
(weakly) optimal since no deviation can change the continuation outcome I.

Combining (a) and (b), σI is sequentially rational in every subgame; hence it is an
SPE. By Step 3, this SPE produces I as the ruling coalition. This proves Proposition 2.1.

Proof of Proposition 2(2). Assume β ∈ (1
2
, 1] and ϕ(I0) = {I}. By Proposition 1 and

Assumption 3, I is the unique maximizer of G over W , i.e.,

G(I) > G(W ) for all W ∈ W \ {I}. (A.1)

For any i ∈ I and any W ∈ W with i ∈ W , we have Ui(W ) = xi + wi(W ) and (by the
payoff structure) wi(W ) = g(i)G(W ), so (A.1) implies

Ui(I) > Ui(W ) for all i ∈ I and all W ∈ W \ {I} with i ∈ W. (A.2)

First, if β > 1
2
, then any two winning coalitions intersect: indeed, if W,W ′ ∈ W and

W ∩W ′ = ∅, then PW∪W ′ = PW + PW ′ ≥ 2βPN > PN , a contradiction.
For any history h, let R(h) ⊆ I0 be the set of remaining agenda-setters at h (those

not yet removed after having their proposal rejected), and define RI(h) := R(h) ∩ I and
k(h) := |RI(h)|. We prove by induction on k(h) that in any subgame starting at h with
k(h) ≥ 1, every SPE yields ruling coalition I.

If k(h) = 1, let a be the unique remaining agenda-setter in RI(h) and consider any
SPE of the subgame at h. If a proposes I, then when members of I are called to vote on
I, voting YES is weakly optimal: a unilateral NO rejects I and moves to a continuation
in which no agenda-setter from I remains, so the eventual ruling coalition (if any forms)
must be some J ̸= I; for any voter i ∈ I, whenever i ∈ J we have Ui(I) > Ui(J) by (A.2),
and whenever i /∈ J we have Ui(J) = 0 < Ui(I). Hence all members of I vote YES and
I is accepted. If instead a proposes some W ̸= I, then either W is accepted, in which
case a strictly prefers deviating to proposing I by (A.2), or W is rejected, in which case
deviating to proposing I yields immediate acceptance and payoff Ua(I). Thus, in any
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SPE, a proposes I and I is accepted, so the ruling coalition is I.
Now fix k ≥ 2 and assume the statement holds for all smaller values. Consider a

subgame starting at some history h with k(h) = k, and fix any SPE of this subgame.
We claim that no winning coalition W ̸= I can be accepted along the induced play.
Suppose, for a contradiction, that some W ∈ W with W ̸= I is accepted at some history
h̃. By the overlap property, W ∩ I ̸= ∅. Let i ∈ W ∩ I be the first member of W ∩ I

(under the realized Nature order) who is called to vote on W along this history. Since
W is accepted, at the moment i is called, voting NO rejects W . If i deviates to NO,
the game continues with the current proposer removed from R(·), so the continuation
starts at a history h′ with k(h′) ≥ k − 1 ≥ 1. By the induction hypothesis, every SPE of
the continuation subgame yields ruling coalition I. Thus the deviation yields outcome I,
while not deviating yields W ̸= I. Since i ∈ I ∩W , (A.2) gives Ui(I) > Ui(W ), so the
deviation is profitable, a contradiction. Therefore no winning W ̸= I can be accepted.

It follows that along any SPE play from h, either proposals are rejected until some
agenda-setter in I proposes I, or I is proposed immediately. When I is proposed, the
same voting argument as above implies it is accepted. Hence the ruling coalition is I in
any SPE of the subgame at h.

Finally, since I0 ∈ W and I ∈ W , the overlap property implies I0 ∩ I ̸= ∅, so at
the initial history h0 we have k(h0) = |I0 ∩ I| ≥ 1. Applying the induction result at
h0 yields that in any SPE of the full game the ruling coalition is I. Payoffs are then
Ui(I) = xi + wi(I) for all i ∈ N by definition.

Proof of Proposition 3. Fix Γ = (I0, p(·), x(·), {Ui(·)}, β) and suppose Assumptions 1–3
hold. Recall from Proposition 1 that

ϕ(I0) = arg max
W∈W

G(W ),

and by Assumption 3 the maximizer is unique whenever it exists. Also since β > 1
2
, any

two winning coalitions intersect.

Only if. Suppose ϕ(I0) = {I}. Then I ∈ W and for every W ∈ W \ {I} we have
G(I) > G(W ). In particular, for every Ains ∈ (AI \ {I}) ∩W we have G(I) > G(Ains),
which is (i). Also, for every Aext ∈ AN\I and every Ains ∈ AI such that Ains ∪Aext ∈ W ,
we have G(I) > G(Ains ∪ Aext), which is (ii).

If. Now suppose I ∈ W and conditions (i)–(ii) hold. We show that G(I) > G(W ) for
every W ∈ W \ {I}, implying ϕ(I0) = {I}.

Take any W ∈ W with W ̸= I. There are two cases.

Case 1: W ⊆ I. If W ∈ AI \ {I}, then W ∈ (AI \ {I}) ∩ W and condition (i) gives
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G(I) > G(W ).
If W /∈ AI , then by Definition 3 there exists Ains ∈ AI such that PAins > PW

and XAins < XW . Since W ∈ W and PAins > PW ≥ βPN , we have Ains ∈ W . By
Assumption 1, (PAins , XAins) strictly dominates (PW , XW ), so G(Ains) > G(W ). If Ains =

I, then G(I) > G(W ) directly. If Ains ̸= I, then Ains ∈ (AI \ {I}) ∩W and (i) implies
G(I) > G(Ains) > G(W ).

Case 2: W ̸⊆ I. Write W = W ins ∪W ext where W ins := W ∩ I and W ext := W \ I.
Because W and I are both winning and β > 1

2
, the overlap fact implies W ins ̸= ∅, and

by assumption W ext ̸= ∅.
Choose Ains ∈ AI such that either Ains = W ins if W ins ∈ AI , or else PAins > PW ins

and XAins < XW ins (guaranteed by Definition 3). Similarly, choose Aext ∈ AN\I such
that either Aext = W ext if W ext ∈ AN\I , or else PAext > PW ext and XAext < XW ext .

Let W̃ := Ains ∪ Aext. By construction,

PW̃ ≥ PW ≥ βPN and XW̃ ≤ XW ,

with at least one inequality strict (since W ̸= I and at least one of the two parts is
strictly improved unless both parts are already best and equal). Hence W̃ ∈ W and
Assumption 1 implies G(W̃ ) ≥ G(W ), with strict inequality whenever at least one part
was strictly improved. In any case, condition (ii) applies to (Ains, Aext) (since W̃ ∈ W)
and yields G(I) > G(W̃ ) ≥ G(W ), hence G(I) > G(W ).

Since G(I) > G(W ) for all W ∈ W \ {I}, I is the unique maximizer of G on W , i.e.
ϕ(I0) = {I}. This completes the proof.

Proof of Proposition 4. Fix a ruling coalition I and two members i, j ∈ I with pi > pj

and xi < xj. Let the post-exchange characteristics be

pi′ = pi −∆p, xi′ = xi +∆x, pj′ = pj +∆p, xj′ = xj −∆x,

where 0 < ∆p ≤ (pi − pj)/2 and 0 < ∆x ≤ (xj − xi)/2. Hence pi′ ≥ pj′ and xi′ ≤ xj′ ,
and the aggregate characteristics of the ruling coalition are unchanged:

PI = PI′ and XI = XI′ .

Let HI(·) denote the indifference curve through (PI , XI).

Step 1 (best insider coalitions and what moves). Before the exchange, no best insider
sub-coalition can contain j but not i. Indeed, if A ⊆ I contains j and excludes i, then
replacing j by i yields a coalition with strictly higher power and strictly lower internal
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resources, contradicting Definition 3. After the exchange, the same conclusion holds
whenever (pi′ , xi′) ̸= (pj′ , xj′); on the knife-edge case (pi′ , xi′) = (pj′ , xj′), any best set can
be chosen so that no best coalition contains j′ without i′ (since swapping produces the
same (P,X)).

Therefore, both before and after the exchange, every best insider sub-coalition is of
one of the following types:

1. contains i but not j;

2. contains both i and j;

3. contains neither i nor j.

Only type-(1) coalitions move. Specifically, if A is type-(1), then after the exchange it
becomes

(P ′
A, X

′
A) = (PA −∆p, XA +∆x),

while type-(2) and type-(3) coalitions do not change.

Step 2 (weakening an insider coalition expands its external safe area). For any insider
coalition A ⊆ I, define its shifted boundary

HA(P ) := HI(P + PA)−XA,

and the associated external safe area

Sext
A :=

{
(P,X) ∈ R2

++ : P < βPN , X > HA(P )
}
.

(Equivalently, (P,X) = (PAext , XAext) ∈ Sext
A iff G(I) > G(A ∪ Aext).)

Suppose A is replaced by another insider coalition Ã with PÃ ≤ PA and XÃ ≥ XA

(at least one inequality weakly strict). Since HI is strictly increasing in P (Lemma 1),
for every P ,

HÃ(P ) = HI(P + PÃ)−XÃ ≤ HI(P + PA)−XA = HA(P ).

Hence Sext
A ⊆ Sext

Ã
(with strict inclusion if at least one inequality is strict). In particular,

every type-(1) best insider coalition becomes weaker and more resource-heavy after the
exchange, so its associated external safe area weakly expands; type-(2) and type-(3) safe
areas are unchanged.

Step 3 (intersection, new best coalitions, and internal stability). External resilience is the
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intersection of the external safe areas across best insider coalitions:

Sext
I =

⋂
A∈AI

Sext
A , Sext

I′ =
⋂

A∈AI′

Sext
A .

Consider the change from AI to AI′ .

(a) Coalitions that remain best. For every A ∈ AI ∩AI′ , Step 2 implies Sext
A weakly

expands if A is type-(1) and is unchanged otherwise.

(b) Coalitions that cease to be best. If some A ∈ AI is no longer best after the
exchange, then its safe area is removed from the intersection, which can only weakly
enlarge the intersection.

(c) Newly best coalitions. Let C ∈ AI′ \ AI be a newly best insider coalition. We
claim C cannot be type-(1). Indeed, every type-(1) coalition shifts by the same vector
(−∆p,+∆x), so dominance relations among type-(1) coalitions are preserved; moreover,
relative to any coalition that does not move, a type-(1) coalition becomes weakly less
powerful and weakly more resource-heavy. Hence a type-(1) coalition cannot become
newly undominated. Therefore C is type-(2) or type-(3), so it does not move.

Since C was not best before the exchange, there exists at least one pre-exchange best
coalition A ∈ AI that strictly dominates it:

PA > PC , XA < XC .

Necessarily such an A must be type-(1) (otherwise the dominance would persist after the
exchange and C could not become best). By Step 2 applied to (A,C) we have Sext

A ⊆ Sext
C .

Since Sext
I ⊆ Sext

A , it follows that Sext
I ⊆ Sext

C . Thus adding C to the intersection cannot
exclude any point that was externally safe before.

Putting (a)–(c) together, we obtain

Sext
I ⊆ Sext

I′ ,

so external resilience weakly increases.

Internal stability. Because (PI , XI) is unchanged, the internal safe region {(P,X) :

X > HI(P )} is unchanged. Any insider coalition that moves does so left/up, making
X > HI(P ) easier to satisfy; coalitions that do not move are unaffected. Hence no new
profitable internal secession is created, so internal stability is preserved.

Therefore, the exchange weakly increases the external resilience of the ruling coalition,
proving the proposition.

Proof of Proposition 5. Fix a ruling coalition I and let HI(·) be the indifference curve
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through (PI , XI), so XI = HI(PI). Take any non-trivial best insider sub-coalition Ains ∈
AI \ {I} and write (PA, XA) := (PAins , XAins).

Since I is a ruling coalition, internal stability implies G(I) > G(Ains), equivalently

XA > HI(PA). (A.3)

For any K ⊆ I, define the translated boundary and external safe region

HK
I (P ) := HI(P + PK)−XK , Sext

K := {(P,X) ∈ R2
++ : P < βPN , X > HK

I (P )}.

In particular, HI
I (P ) = HI(P + PI)−XI and HA

I (P ) = HI(P + PA)−XA.
We claim that for every P ≥ 0,

HI
I (P ) > HA

I (P ), (A.4)

which implies Sext
I ⊆ Sext

Ains . To prove (A.4), note that PI > PA and set ∆ := PI −PA > 0.
Then

HI
I (P )−HA

I (P ) =
[
HI(P + PA +∆)−HI(P + PA)

]
− (XI −XA).

Because HI is strictly convex, the increment HI(t+∆)−HI(t) is weakly increasing in t.
With t = P + PA ≥ PA,

HI(P + PA +∆)−HI(P + PA) ≥ HI(PA +∆)−HI(PA) = HI(PI)−HI(PA).

Using XI = HI(PI) and (A.3), we have HI(PI) − HI(PA) > XI − XA, hence HI
I (P ) −

HA
I (P ) > 0 for all P ≥ 0, proving (A.4).

Therefore, for every Ains ∈ AI \ {I}, Sext
I ⊆ Sext

Ains . Since I ∈ AI ,

Sext =
⋂

Ains∈AI

Sext
Ains = Sext

I .

Finally, any internal exchange that preserves (PI , XI) leaves HI and thus Sext
I unchanged,

so external resilience is invariant to such internal reallocations.

Proof of Proposition 6. Fix a ruling coalition I and consider the finite sequence of within-
I exchanges in Figure 6 that keeps (PI , XI) fixed and terminates at a hierarchical allo-
cation I ′ := IT . Let I t denote the allocation after t exchanges. By Proposition 4, each
exchange weakly enlarges the external safe area, so

Sext
I ⊆ Sext

I′ .
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If the inclusion is strict at some intermediate step, we are done. Hence suppose Sext
It = Sext

I

for all t < T .
Immediately before the last exchange, there is (by construction) a remaining mis-

ordered pair i, j ∈ I with pT−1
i > pT−1

j and xT−1
i < xT−1

j . Consider any best insider
sub-coalition C ∈ AIT−1 . As in the proof of Proposition 4, no best insider sub-coalition
can contain j but exclude i: if j ∈ C and i /∈ C, then replacing j by i strictly increases
power and strictly decreases internal resources, contradicting the definition of AIT−1 .
Therefore, the only best insider sub-coalitions whose (P,X)-location changes in the last
exchange are those that contain i and exclude j.

Fix any A ∈ AIT−1 with i ∈ A and j /∈ A, and let A′ be its post-exchange counterpart.
By the definition of the exchange, pi decreases and xi increases, while j /∈ A, so

PA′ < PA and XA′ > XA.

Recall the translated boundary HC(P ) := HI(P +PC)−XC and the associated external
safe region Sext

C := {(P,X) ∈ R2
++ : P < βPN , X > HC(P )}. Since HI is strictly

increasing, for every P < βPN we have

HA′(P )−HA(P ) =
[
HI(P + PA′)−HI(P + PA)

]
− (XA′ −XA) < 0,

hence HA′(P ) < HA(P ) for all P < βPN , and therefore

Sext
A ⊊ Sext

A′ . (A.5)

The external safe area of the ruling coalition is Sext
IT−1 =

⋂
C∈A

IT−1
Sext
C . In the last

exchange, (i) every best sub-coalition that does not contain i is unchanged, hence its
Sext
C is unchanged; (ii) every best sub-coalition that contains i and excludes j expands

strictly as in (A.5); (iii) any change in the best-subcoalition set can only remove domi-
nated constraints (which weakly enlarges the intersection), and cannot create a new best
sub-coalition that contains j but excludes i (by the dominance argument above). Conse-
quently, the last exchange yields a strict expansion of the intersection whenever at least
one affected boundaryHA is binding somewhere in the upper envelope maxC∈A

IT−1
HC(P )

on (0, βPN).
It remains to show that for sufficiently concave CES preferences (i.e. ρ sufficiently

negative), such binding occurs. As ρ → −∞, Gρ converges pointwise to the Leontief
aggregator G−∞, and the indifference curve through I becomes kinked; each translated
boundary HC(·) inherits a single kink. Since AIT−1 is finite, the upper envelope of these
kinked boundaries is piecewise and is attained by a single boundary except at finitely
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many kink/intersection points. In particular, some affected best sub-coalition A ∈ AIT−1

with i ∈ A and j /∈ A attains the envelope at some P ∗ ∈ (0, βPN) in the Leontief limit
(cf. Figure 11). By continuity of HI and hence HC(·) in ρ on compact P -sets, there
exists ρ̄ < 1 such that for all ρ ≤ ρ̄, the same coalition A remains binding at some
P ∗ ∈ (0, βPN). For such ρ, the last exchange strictly lowers the envelope at P ∗ (by
(A.5)), and thus strictly enlarges Sext

IT−1 , implying

Sext
I ⊊ Sext

I′ .

Appendix B Examples

The following example illustrates a typical function Gi(·) satisfying Assumptions 1-3 and
clarifies the distinction between environments that generate inclusive versus exclusive
ruling coalitions.

Example 4. For any i ∈ I ∈ W \ {N}, consider

wi(I) = Gi(I) :=

(
pi
PI

)(
PI

PN

)α+1(
XN

XI

)
, (B.1)

where α > 0. The term pi
PI

is i’s share of plundered resources, proportional to her relative
power in the ruling coalition, and the plunder function

(
PI

PN

)α+1(XN

XI

)
ranks ruling coali-

tions by the resources they extract. One can verify that α > 0 is required for parts (i)-(ii)
of Assumption 1; if α < 0, these are violated.

Normalize PN = XN = 1. Then

Gi(I) = piP
α
I

1

XI

.

Fix a payoff level Gi and let I be a ruling coalition containing i. The indifference curve
of i through I is the locus of (P,X) with Gi(P,X) = Gi:

X = Ci(I)P
α, (B.2)

where Ci(I) :=
pi
Gi

and P ∈ [β, 1]. Along such an indifference curve the marginal rate of
substitution between power and resources is

MRSPX = −αX
P
.
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The parameter α governs the relative valuation of power versus resources. A higher α
makes indifference curves steeper: for given (P,X), the marginal value of power relative
to internal resources is higher, so players are more willing to sacrifice resources to gain
power. Since P ∈ [β, 1], a higher α reduces Pα

I (for PI < 1) and thus dampens the
increase in plunder from further increases in power. This corresponds to a relatively
weak plundering technology: very powerful coalitions obtain relatively modest incremental
gains from additional power, and insiders are more willing to form large, inclusive ruling
coalitions.

Conversely, lower values of α flatten indifference curves and raise Pα
I for PI < 1,

making payoffs more sensitive to power and less constrained by internal resources. This
corresponds to a relatively intensive plundering technology: small, powerful coalitions can
extract much more from outsiders, and insiders are more reluctant to dilute power, so
ruling coalitions tend to be more exclusive.

The next example shows that, without further restrictions on the joint distribution of
power and resources and the plundering function, there is no general characterization of
the ruling coalition’s composition. This follows, first, from Proposition 2(1), which implies
that any coalition in the set of potential ruling coalitions may be the ruling coalition for
some range of indifference curves; and second, from the fact that the set of potential
ruling coalitions itself cannot be sharply characterized without additional structure on
(pi, xi)i∈N . In particular, there is no guarantee that the ruling coalition contains the
most powerful player, the player with the fewest resources, or the player with the highest
power-to-resource ratio (Figure 18).16 Example 5 illustrates this point.

Example 5. Suppose N = {1, 2, 3, 4}, with

p1 = 6, x1 = 5, p2 = 3, x2 = 3, p3 = 2, x3 = 6, p4 = 5, x4 = 4,

and let β = 1
2
+ ϵ. Then the set of winning coalitions is

W = {{1, 2}, {1, 4}, {2, 4}, {1, 2, 4}}.

As shown in Figure 18, different indifference curves select different ruling coalitions: when
the indifference curve is H1, the ruling coalition is {2, 4}, which excludes the player with
the highest power (player 1); when it is H3, the ruling coalition is {1, 4}, which excludes
the player with the lowest resources; and when it is H2, the ruling coalition excludes
the player with the highest power-to-resource ratio (player 4). Thus, absent additional
structure, the ruling coalition need not contain the most powerful, or the poorest player.

16Example 4 in the appendix shows that a sharper characterization is possible when powers, resources,

43



Figure 18: Ruling coalition under different indifference curves.
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